MAIZE GENETICS COOPERATION

NEWSLETTER

74

April 15, 2000

The data presented here are not to be used in publications without the consent of the authors.

Department of Agronomy and U.S. Department of Agriculture University of Missouri Columbia, Missouri

Remembering

Li Jing Xiong (syn. Li Ching Hsiung)

Earl B. Patterson

Cooperators

(see memories following the Table of Contents)

I.	FOREWORD1	
۱۱.	REPORTS FROM COOPERATORS	
AM	ES IOWA	
7	Detection of the p1 expression in vegetative organsCocciolone, SM, Sidorenko, LV, Peterson, T	8
BFI	Putative allele test for a Mutator-tagged zebra stripe mutantHeck, DA, James, MG, Chitnis, PR	
00	Studies on types of space induced variations in maize (Zea mays L.)Zeng, M, Yang, T	8
RE	Analysis on new CMS types Bao I, Bao II in maize (Zea mays L.)Yan, Z, Zeng, M, Yang, T	Č.
DLI	Developmentally regulated and tissue-specific expression of the glossy2 gene of maizeVelasco, R, Korfhage, C, Salamini, A, Tacke, E, Schmitz, J, Motto, M, Salamini, F, Döring, HP	.0.
BEF	IGAMO, ITALY AND WAGENINGEN, THE NETHERLANDS	
	Identification of QTLs for grain yield and grain-related traits of maize using an AFLP map, different testers, and cofactor analysis Ajmone Marsan, P, Redaelli R, van Wijk R, Stam P, Motto M	
BLA	CKSBURG, VIRGINIA	
BUI	A b-glucosidase aggregating factor (BGAF) is a member of the small heat shock protein family (sHSP)Blanchard, D, Esen, A	8
05	Abnormal node development in na1/na1Cheng, W, Cheng, P-c, Walden, DB	Č.
CEI	JAR FALLS, IOWA AND EMPORIA, KANSAS Inflorescence development in a Toluca teosinte Orr. AR. Mullen, K. Klaahsen, D. Sundberg, MD	13
CH	ESTNUT HILL, MASSACHUSETTS	
	Continued studies on mutable inbred derived from anther culture Ting, YC, Tran, L	1
CH	SINAU (KISHINEV), MOLDOVA	
	The posterior evaluation of maize selection for productivityChernov, AA, Mihailov, ME	1
-	The influence of neterozygosis for marker loci on grain yield in maizeMinallov, ME, Chernov, AA	2
12	Segregation for the marker ra1 gene in matroclinal haploids of maizeRotarenco, VA1	3
	Synchronization of cell cycles as a means of enhancing the efficiency of chromosome doubling in maizeRotarenco, VA	3
	Morphological characteristic of the correlation between the traits of maize diploids and haploidsHotarenco, VA	4
	Lysikov, VN1	5
5	Studies on the induced variability of maize plants following the radiation of the female gametophyteRomanova, IM, Krivov, NV,	6
	Dbtaining fertile pollen in maize maternal haploidsChalyk, ST (Cealic, ST)	7
CLE	MSON, SOUTH CAROLINA	
	Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line LH132 Tomkins, JP, Frisch, DA, Byrum, JR, Jenkins, MR, Barnett, LJ, Wicker, T, Luo, M, Wing, RA	8
25	Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line B73 Tomkins, JP,	Ĩ
CO	Frisch, DA, Jenkins, MR, Barnett, LJ, Luo, M, Wing, RA	8
00	A safe procedure for EMS treatment of pollen in maizeKato, A1	9
	Mutant photographs on the World Wide Web (Part 2) Neuffer, MG	2
	Location of two EMS mutants, <i>It[*]-N1253B</i> and <i>sh[*]-N1328A</i> Neutfer, MG	2 2
CO	LUMBIA, MISSOURI	-
00	The development of systematic descriptors and associated vocabulary for Zea mays (maize/corn) Vincent, PLD, Coe, EH, Jr	2
CO	LUMBUS, OHIO The maize Mo1 gene encodes a WD-repeat protein similar to An11 and TTGHernandez, JM. Pizzirusso, M. and Grotewold, F	4
	Preliminary analysis of green fluorescent compounds induced by ectopic expression of the P geneLin, Y, Dong, X, Grotewold, E2	4
DN	EPROPETROVSK, UKRAINE	
	Pismenetskava, IY, Chernousova, NM	6
DUI	RHAM, NORTH CAROLINA	
	Pilot study for heritability of enhanced drought tolerance in corn via <i>Tripsacum-Z. diploperennis</i> hybridsEubanks, M	7
	Assay for proteinase inhibition in Tripsacum-Zea diploperennis X maize hybrids resistant to Western corn rootwormEubanks. M.	0
	Cook, C	0
DU	RHAM, NORTH CAROLINA AND BROOKINGS, SOUTH DAKOTA	1
DUI	RHAM, NORTH CAROLINA AND MANHATTAN, KANSAS	4
	Bioassays for grain weevil resistance in Tripsacum X Zea diploperennisEubanks, M, Throne, J	2

1

i

FORT COLLINS, COLORADO AND VICTORIA, BRITISH COLUMBIA	
Linkage distance between whp1 and ch1Byrne, PF, Styles, ED.	32
IRKUTSK, RUSSIA	
Characterization of nuclear and mitochondrial DNA topoisomerases IKonstantinov, YM, Tarasenko VI	33
DNA synthesis in organello in mitochondria of maize and wild perennial crop Elymus sibiricus under different temperature conditions	
Konstantinov, YM, Lutsenko, GN, Zukova, VV, Subota, IY, Arziev, AS	33
DIVA synthesis in mitochondria under model changes of redox conditionsKonstantinov, YM, Subota, IY, Podsosonny, VA,	04
Effect of mass collection on the adaptive improvement of two subtractical mains (Zee mays L) populations	24
Studies on utilization of tropical and subtropical maize germalasmi in 7	34
Use of maize FST databases to identify and isolate homologs for genes with outative function identified from other species and genera	
Helentiaris. TG	35
New leaf mutation shr*-JH87, shredded leafTrimnell, MR, Albertsen, MC, Noble, SW	
New chromosome 3S mutant mssi*-DR87A Trimnell, MR, Fox, TW, Wilkinson, D, Albertsen, MC.	
New ra1 alleleTrimnell, MR, Albertsen, MC	37
JOHNSTON, IOWA AND URBANA, ILLINOIS	
New male-sterile allele of the male-fertility gene Ms45 Trimnell, MR, Fox, TW, Patterson, E, Albertsen, MC	
New male-sterile allele of the male fertility gene Ms30Trimnell, MR, Fox, TW, Patterson, E, Albertsen, MC	38
JUIZ DE FORA-MG, BRAZIL AND VICOSA-MG, BRAZIL	
Image analysis as a tool for chromosome deficiency identification in maize Viccini, LF, de Carvalho, CR	38
LAWRENCEVILLE, NEW JERSEY	
Identification of two cDNAs encoding methylenetetrahydrofolate reductaseKhan, F, Kite, M, Benner, M	39
LLAVALLOL, ARGENTINA	
Electrophoretic studies on maize endosperm proteins: modifications to Laemmli's SDS-Page techniqueCorcuera, VR, Bernatene, E,	
	40
LOMAS DE ZAMORA, BUENOS AIRES, ARGENTINA AND LLAVALLOL, BUENOS AIRES, ARGENTINA AND RIO CUARTO,	
CORDOBA, ARGENTINA	10
Genetic variation in the progeny of maize/Tripsacum hybridsGarcia, MD, Bonamico, N, Di Renzo, MA, Molina, MdelC	40
LOMAS DE ZAMORA, BUENUS AIRES, ARGENTINA AND LLAVALLOL, BUENUS AIRES, ARGENTINA	44
Meiotic pairing in the interspecific hybrid. Zee mays. Zee perepais and Zee diplonarconnic	41
I OMAS DE ZAMORA BLIENOS AIRES ARGENTINA	42
Association between vield components, arain morphological traits and volume expansion in poncore hybrids cultivated in Argentina	
Broccoli, AM, Burak, R	43
Genotype by environment interaction on popping expansion and yield in popcorn hybrids cultivated in ArgentinaBurak, R.	
Broccoli, AM	44
Stability analysis of forage response in maize Torrecillas, MG, Bertoia, LM	45
Breeding of maize for silage: Yield components in genotypes with different degrees of improvement Torrecillas, MG, Broccoli, AM,	
Bertoia, LM	45
LONDON, ONTARIO, CANADA	1000.04
Silver staining root-tip sections in maizeMaillet, DS, Walden, DB	45
Sequential C-banding and silver staining of interphase cells in maizeMaillet, DS, Walden, DB	46
Chromatin aminity in interphaseMaillet, US, Walden, UB	47
Radison, Wisconsin Reptuesies Tran. WE	10
	40
Dynamics of pH changes in corp (Zea mays L) haplaid cell suspansion cultures	19
MILAN ITALV	40
Molecular analysis of abs*-7065 a mutant with severe impairment in seed developmentGiulini & Consonni G Aspasi C	
Gavazzi G	50
The twin trait in maizePilu, R	
MINAS GERAIS, BRAZIL	
Mapping a novel opaque endosperm mutant using SSR markersMaki, CS, Carneiro, NP, Guimarães, CT, Lopes, MA, Paiva, E	52
MOSCOW, RUSSIA	
RAPD markers variability in maize somaclones produced from inbred A188Osipova, ES, Dolgykh, YI, Shamina, ZB, Gostimsky, SA	52
MOSCOW, RUSSIA	
A putative transposed K-box homolog of zmm1 and zag2Ermishev, VY, Karyagina, AS, Khavkin, EE, Naroditskii, BS, Zabrodina, MV	53
NEWARK, DELAWARE AND JOHNSTON, IOWA	
Single nucleotide polymorphisms (SNPs) in corn: early lessonsBhattramakki D, Ching A, Dolan M, Register J, Tingey S, Rafalski A	54
NORMAL, ILLINOIS	
A survey of ig containing materials Schneerman, MC, Charbonneau, M, Weber, DF	54
NOVOSIBIRSK, BUSSIA AND WOODWARD, OKLAHOMA	

The genetic programs of nonreduction and parthenogenesis in corn-gamagrass hybrids are inherited and expressed in an independent	55
PASCANI, REPLIBLIC OF MOLDOVA	
Differences in sensitivity to herbicide of maize lines obtained under disruptive selection for reversion frequency of the mutable allele $o2m(r)$ Koterniak VV	57
RALEIGH, NORTH CAROLINA A remarkable new tessinte from Nicaragua: Growth and treatment of progeny	58
SATEMARADE new teosine non-richaragua. Growth and treatment of progenyDird, river(
SAINT PAUL, MINNESOTA	
Rines, HW, Phillips, RL	60
SAN DIEGO, CALIFORNIA barren stalk1 is epistatic to teosinte branched1Ritter, MK, Padilla, CM, Schmidt, RJ	61
Genetic diversity and its relationship to hybrid performance and heterosis in maize as revealed by AFLPs and RAPDsWu, M	62
SOFIA, BULGARIA Studying the possibilities for transfer of regeneration capability in vitro via classical crossesNedev, T, Kruleva, M, Krapchev, B	63
Genetic relationship among cytoplasm analogs and morphogenic potential of maize inbredsNedev, T, Kruleva, M, Krapchev, B	63
Multi-photon excited fluorescence and absorption properties of maize tissuesLin, B-L, Kao, F-J, Sun, C-K, Cheng, P-c	63
Identification of a gene at the syntenic sh2-a1 region in maizeGuo, BZ, Butron, A, Li, RG, Zhang, ZJ, Widstrom, NW, McMullen, MD, Lynch, RE	64
TUCSON, ARIZONA Npi402 and ncsu1 are identicalStam, M, Lavin, T and Chandler, VL	66
URBANA, ILLINOIS	
Additional linkage tests of non-waxy (Waxy1) reciprocal translocations involving chromosome 9 at the MGCSCJackson, JD, Stinard, P, Zimmerman, S	67
Additional linkage tests of waxy1 marked reciprocal translocations at the MGCSCJackson, JD, Stinard, P, Zimmerman, S Allelism testing of miscellaneous stocks in Maize COOP phenotype only collectionJackson, JD.	67 69
Three-point linkage data for Og*-0376 Wx1 19-10b on 10SJackson, JD	69
The brown kernel mutant of maize consists of a duplicate factor pair brn1 brn2Stinard, PS	/0
John Deere green aleurone corn carries two H7-specific dominant inhibitors of aleurone colorStinard, PS	70
Inree-point linkage data for 1/2 bits suf on 45Stinard, PS	
Miscellaneous allelism testsStinard, PS.	/1
Results of TB tests of unplaced mutants Stinard, PS, and Jackson, JD	/1
URBANA, ILLINOIS AND BERKELEY, CALIFORNIA	
URBANA, ILLINOIS AND GAINESVILLE, FLORIDA	72
Chromosome location of two Oh51A CMS-S restoring alleles and their potential usefulness in the molecular cloning of <i>rf</i> loci	73
VARANSI INDIA	
Attributes of maize genotype for haby corn productionKumar S Kalloo G	74
VICOSA, BRAZIL	and 1
Cytogenetic mapping of sister chromatid exchange points in maizeBorges, CMO, Carvalho, CR	74
Is the recombination of genes during natural domestication an act of genetic engineering?Galinat, WC	75
The recombinant of two different double rowing pathways quadruples the kernel row number per ear (spike) during the domestication of maize from teosinteGalinat, WC	75
WOOSTER, OHIO AND LONDON, ONTARIO Persistence of 18kDa HSP mRNA accumulation in metal-ion insulted maize seedling radicles relative to heat shockBouchard, RA,	1000
Yang, Z, Walden, DB.	76
WUMAN, UMINA AND BEIJING, UMINA	
tig LH Gu MG Guo LO	77
Induced multiple ear mutants in popcorp (7 mays var praecox Sturt)Adamu AK	82
Gamma-ray (60CO) and thermal neutron induced tassel seed and male sterile mutants in popcorn (Z. mays var. praecox Sturt.) Adamu, AK	82
III. ADDRESS LIST	83

iii

IV.	MAIZE GENETICS COOPERATION STOCK CENTER
V.	MAIZE DATABASE
VI.	SYMBOL INDEX114
VII.	AUTHOR INDEX

DONORS TO THE ENDOWMENT FUND FOR THE NEWSLETTER

Hectare Patron (\$10,000) PIONEER HI-BRED INTERNATIONAL, INC. (Donald Duvick)

Nursery Patron (\$5.000) CIBA-GEIGY SEEDS; FUNK SEEDS INTERNAT.; CIBA-GEIGY AGR. BIOTECH. RES. UNIT NOVARTIS

Whole Plant Endowment (\$1,000) MYCOGEN CORPORATION **BIOSEM - LIMAGRAIN GROUPE** CARGILL HYBRID SEED CUSTOM FARM SEED RESEARCH (Virgil L. Fergason) DEKALB GENETICS CORPORATION DNA PLANT TECHNOLOGY CORP. E. I. DU PONT DE NEMOURS & CO. GARST SEEDS Virginia Harrison ICI SEEDS (Keith Edwards; Cliff Hunter) David C. Jewell MAX-PLANCK-INSTITUT f. ZUCHTUNGSFORSCHUNG (ERWIN-BAUR-INSTITUT) Abt. Saedler Barbara McClintock NORTHRUP KING COMPANY PIONEER HI-BRED INTERNATIONAL, INC. (Marc C. Albertsen) SANDOZ CROP PROTECTION CORP. SEMENTES AGROCERES S. A., BRASIL A. Forrest Troyer UNITED AGRISEEDS INC.

> Kernel Endowment (\$150) Donald S. Robertson Ray Reiguang Ming Hideshi Yasui (Please see also the donors listed in MNL 63-73)

> > ISSN 1090-4573

CROP SCIENCE

Volume 39

January-February 1999

Number 1

PERSPECTIVE

Li Jing Xiong (C.H. Li)—Functioning in Adversity

S. S. Chase*

ABSTRACT

Li Jing Xiong (syn. Li Ching Hsiung), member of the Chinese Academy of Sciences (1980), president of the Crop Science Society of China (1984), Chief Scientist, basic agronomy, National Basic Research Program (1992), Cornell University Ph.D. (1948), best known among his American associates as C.H.Li, died on 28 June 1997 at Beijing after a prolonged illness. Dr. Li's direct and personal favorable impact on the food supply of the Chinese people came through two major actions and in a number of contributory ways: first, his sturdy opposition to Lysenkoism and to a compromise with the Chinese Lysenkoists, and second, and only possible with the first contribution, the development of maize (Zea mays L.) hybrids of superior yield; third in importance, a series of minor contributions from his early work on wheat-rye hybrids (triticale, × Triticosecale Wittmack), Setaria millet [Setaria italica (L.) P. Beauv.], sorghum [Sorghum bicolor (L.) Moench] hybridization, hybrid maize technology, and specialty maize such as quality protein hybrids. In addition, in his early years, he made contributions to understanding the cytogenetics of maize. And, in spite of formal difficulties, Professor Li was always an honored teacher to his colleagues and associates.

LI JING XIONG (syn. Li Ching-Hsiung), member of the Chinese Academy of Science (1980), president of the Crop Science Society of China (1984), Chief Scientist, basic agronomy, National Basic Research Program (1992), known best among his American associates as C.H. Li., died on 28 June 1997 at Beijing after a prolonged illness. There are few among us who have functioned so well in adversity and made such substantial contributions as this modest, well-beloved man.

Born 20 Oct. 1913 at Fuzhou, Jiangsu Province, China, C.H. Li received his B.A. in 1936 from Zhejiang University where he remained an additional year as a teaching assistant before moving on in April 1937 to join Prof. H.W. Li's team of cytogeneticists at Wuhan University in central China (H.W. Li had been a graduate student of Dr. R.A. Emerson at Cornell in 1929 and was a close friend of Dr. G.W. Beadle). At Wuhan, C.H. Li

P.O. Box 193, Chase Road, Shokan, NY 12481. Received 18 May 1998. *Corresponding author (sschase@aol.com).

Published in Crop Sci. 39:1-3 (1999).

demonstrated his interest and competence in research by undertaking, as his first cytological study, an investigation of gene-controlled development of abnormal pollen mother cells in maize.

Wuhan University personnel removed themselves westward in advance of invading Japanese troops after the outbreak of the Sino-Japanese War on 7 July 1937. Prof. H.W. Li decided to accept a position in Sichuan Province as chief agronomist in charge of cereal improvement in the war zones and asked his assistants, of whom our C.H. Li was one, to go there as a group. When the group left Wuhan on 1 Dec. 1937, C.H. Li carried with him a key part of his research material, a first generation wheat-rye hybrid seedling dug from the nursery. This progenitor triticale seedling in its small pot was carried by C.H. Li on foot across the upper Yangtze River and the hilly mountain region beyond for over a month before it could be replanted at the Sichuan Agricultural Improvement Institute.

During the Sino-Japanese War and subsequent World War II, the small group of plant cytogeneticists in West China consisting of H.W. Li, C.H. Li, and W.K. Pao played an important role in strengthening agricultural technology. As early as 1938, C.H. Li initiated work on induction of polyploidy in crop plants by use of colchicine.

Li came to the USA in November 1944, holding a research assistantship granted by Dr. L.J. Stadler of the University of Missouri. From Missouri, Li moved first to the University of Minnesota to work with Dr. C.R. Burnham and then to the California Institute of Technology to work with Dr. E.G. Anderson. He then enrolled at Cornell University in August 1945, where he held a research assistantship and pursued his research under the direction of Dr. L.F. Randolph. (There, returning from military service, it was my good fortune to share an office with Li.)

Upon completion of his doctoral research in 1948, he was asked by Dr. Randolph to participate in the USDA research project on the cytogenetic effects of the Bikini atomic bomb radiation on exposed maize.

Before returning to China in September 1948, Dr. Li

spent two additional months at the California Institute of Technology as a post-doctoral scientist to enable him to study a pericentric inversion of maize chromosome 9 that he had found in his doctoral research material.

Upon his return to China, Dr. Li joined the Agricultural College of Tsing Hua University at Beijing in November 1948, just 6 wk before the Chinese Communist takeover of that city. After "liberation," the several agricultural colleges of the region were reorganized as the Beijing Agricultural University.

Li's expectation upon return to China had been that he would be able to pursue a career in teaching and research as a professor of cytogenetics. However, the period from 1949 to 1956 proved to be a most difficult time for western-trained biologists who wished to pursue studies of genes and chromosomes and to teach genetics. This was the period during which the Russian authoritarian genetic dogma, Lysenkoism, was imposed and prevailed in China, adversely affecting biological sciences in general, and, most severely, those engaged in agriculturally related genetic research.

During the ideological remolding campaign for intellectuals in 1952, biologists, especially western-trained geneticists, were criticized. Li's response was, for the time, to "forget about genes and chromosomes," to avoid formal teaching of genetics, to give up publication, and, without stressing his goal of maize improvement through inbreeding and hybridization of inbred lines, to concentrate on his second choice—practical maize (corn) breeding. (The Lysenkoist dogma held inbreeding to be "bad." Li told me later, with a twinkle in his eyes, "I gave myself permission to inbreed.") Many of his academic colleagues during this period simply discontinued all professional activity. Another Li, the wellknown population geneticist, C.C. Li, a conspicuous target, found it prudent to flee China.

In 1956, a break came. From 1949 through 1956 the prevailing policy in China had been to "learn from the Soviet Union." In 1956, Chairman Mao Zedong declared a new policy: "Let one hundred flowers bloom, let one hundred schools of thought contend." A key reason for declaring this new policy was the "genetics question." Mao Zedong and Zhou Enlai appointed a number of party members, not themselves geneticists, to investigate the Russian genetic literature. This committee reported that there were indeed serious problems. The committee suggested that a conference be held, the Qingdao Symposium of 1956, during which the "genetics question" would be fully examined in "free debate."

As a participant in that symposium, Dr. Li, at considerable professional and personal risk, took a key role in the ensuing debate. There had been much argument for effecting a compromise between "the contending schools." According to the report of the Qingdao Symposium, a few of the participants spoke out strongly, and effectively, against any sort of merger. One was Li, the others were Sheng Zujia, the microbiologist, and Wu Zhongxian, the animal geneticist. Dr. C.H. Li said, "there could be no compromise." Freely translated, he asked, in effect, "What precisely do you mean by compromise? That we accept half of Lysenko and let them accept half a gene? In all natural sciences, there is only one language. And there is only one truth. I don't want to fight, but I don't understand what you mean by compromise."

The symposium marked the end, not of Lysenkoism but of the Lysenkoist monopoly in China, and the end of the ban on genetics. Though the "two schools" coexisted for many years after 1956, Lysenkoists individually continued, and continue today, though not as doctrinaires, to hold powerful positions in agriculture and general biology. Soon after the meeting, a withering of direct support for a Lysenkoist "science" occurred.

Dr. Li's highly effective work on improvement of maize for China was both simple in approach and efficient in execution. From the start, he understood the breeding methods and advantages of the inbred-hybrid system of maize improvement undertaken so effectively in the USA; he knew that much of the northeastern agricultural soils and climate of China were very similar to the American "Corn Belt;" he had brought back with him, in 1948, a collection of the then important U.S. inbred lines and in subsequent years was able through friends in the USA to obtain additional elite inbreds and other useful breeding materials. From this base and with the complementary addition of indigenous Chinese corn cultivars from which inbred lines were subsequently developed, Dr. Li was able to breed a series of highly productive maize hybrids for China. Initially, these were double cross hybrids. Then, as in the USA, single cross hybrids came to the fore. Li exploited the Reid-Lancaster heterotic pattern, using first the Connecticut inbred C103 developed by Donald Jones as a key parent and then, when it became available, the Missouri inbred Mol7 developed by Marcus Zuber, crossing these with Chinese Reid-type inbreds of his own breeding.

To a remarkable degree, the initial improvement of maize yields through heterosis breeding in China was due solely to the efforts of Dr. Li and the small group of younger scientists he trained. During these early years, he was often invited to make on-the-spot inspections and to give training courses on breeding and seed production. Meanwhile, Dr. Li generously distributed elite inbred lines and basic breeding materials upon the request of plant breeders in other research institutes. In consequence, superior maize hybrids and efficient breeding and seed production techniques were popularized successfully throughout China.

The first group of Dr. Li's hybrids, double crosses bearing Nuna numbers (Agricultural University numbers) came into use in the early 1960s. Genetic studies on cytoplasmic male sterility were carried on in parallel, leading to gains in hybrid seed production efficiency. By 1965, 333 000 ha of these hybrids were planted in Shanxi Province alone.

In 1966, an epidemic of northern leaf blight blasted the corn crop, affecting both the old open-pollinated cultivars and many of the new hybrids. This led to the second phase of Dr. Li's breeding efforts, with a stronger focus on breeding for disease resistance. It took Dr. Li

2

and his associates another 8 or 9 yr to develop the elite single cross hybrid, Zhongdan No. 2, which was characterized by its good general performance, wide adaptability, and high resistance to both northern and southern leaf blights as well as head smut, a disease that can be very damaging to maize in cold, dry regions of China. Since its release to farmers during the period 1977 to 1988, Zhongdan No. 2 was widely planted—2 million hectares in 1986 alone. The total increment of maize grain gain over local check varieties for this period amounted to 11.73 million megagrams. A First Class Invention Prize was awarded to Dr. Li and his associates in 1984 for development of this hybrid.

Other phases of Dr. Li's activities, briefly stated, include the following.

- 1. The development of a high lysine maize hybrid, Zhongdan No. 206, which was planted to about 28 600 ha in 1989, with the grain used primarily as swine feed, and the development of several semihard opaque-2 and quality protein hybrids.
- Organization in 1983 of a highly successful nationwide coordinating program for maize breeding, for study and exchange of information on the use of exotic germplasm, population improvement for special characteristics in conjunction with inbred development, breeding for resistance to newly prevalent maize diseases, and for high oil hybrids.
- 3. Improvements in seed production technology, including use of cytoplasmic male sterility, and a practical method for use of chromosomal gene male sterility.
- 4. Initiation, at an early date, of winter-season breeding programs in South China, enabling an increase in the annual rate of breeding progress.

It is not to be thought that all this productive work went forward without being affected by the historical movements of the times. From 1966 through 1976, the impact of the "Cultural Revolution" on science was profoundly destructive. In the early days of the "tenyear turmoil," Dr. Li had been "sent down" to Dazhai Commune in Xiyang County, Shanxi Province, from his university, to receive "re-education" from the peasants, a common experience shared by many other professors during the same period. This was not as trying an experience for Dr. Li as it was for many of his academic colleagues because Dr. Li was used to working with his own hands and with peasants. Though inescapably an intellectual, Dr. Li was totally without arrogance. It is a compliment to both Dr. Li and the peasants of Shanxi that they worked together with mutual respect and admiration, forwarding the genetic improvement and field performance of maize. Dr. Li was lucky in being "sent

down" to the Dazhai Commune because it was during that period a leader in utilizing advanced production technology. There is some suggestion in the record that Zhou Enlai played a direct role during the "re-education" period in placing Dr. Li at Dazhai, where his talents would be both utilized and appreciated. For Li "working with the peasants" was nothing new or difficult.

I lost contact with Li during this period of years. For me, corresponding with scientists in China was chilled by McCarthyism. The Chinese likewise were at risk in corresponding with us. However, in 1971, my youngest daughter, Alice, had the remarkable opportunity to participate in a Putney School work-study trip of several months to China. (She was in Beijing when President Nixon came visiting.) I asked her to enquire concerning Dr. Li-she found him at Dazhai Commune. In 1974, consequent to the improvement of intergovernmental relations, a high level U.S. agricultural delegation visited China. Shortly after, a group of Chinese scientists, of whom Dr. Li was a leader, visited here. In 1975, my wife and I went to China to visit Dr. Li, as guests of the Chinese Academy of Agricultural and Forestry Sciences.

Dr. Li's direct and personal favorable impact on the food supply of the Chinese people came through two major actions and in a number of contributory ways: first, his sturdy opposition to Lysenkoism and to a compromise with the Chinese Lysenkoists, and second, and only possible with the first contribution, the development of maize hybrids of superior yield; third in importance, a series of minor contributions from his early work on wheat-rye hybrids (triticale), Setaria millet, sorghum hybridization, hybrid maize technology, and specialty maize such as quality protein hybrids. In addition, in his early years, he made contributions to understanding the cytogenetics of maize. And he was always, in spite of formal difficulties, an honored teacher to his colleagues and associates. It is perhaps as pioneer and teacher of corn breeding that Dr. Li will best be remembered.

Assuming a per capita dietary requirement of about 300 kg of grain per person per year and the key role Dr. C.H. Li played during his professional career in provision of elite maize hybrids to Chinese agriculture, one can estimate that Dr. Li substantially contributed to the feeding of approximately 100 million persons per year in excess of those who could otherwise have been well fed during the period 1952 to 1965. Of himself, Dr. Li said, "I need corn and corn needs me too." Thus, new turmoil or old, strong in his belief that in China improvement of corn production was of key importance, he continued each season until his health failed, to work in his corn nurseries.

Memorial in Honor of Earl B. Patterson

Earl B. Patterson passed away on Saturday May 1, 1999. He was 75 years old. He is survived by his children, Mark and Anne. His wife Betty passed away August 1, 1999.

His name is synonymous with the Maize Genetics Cooperation Stock Center whose current thriving status is attributable, in large measure, to his unstinting effort in its behalf. His deep imprint also remains with the annual Maize Genetics Conference, which he organized and presided over through the 60s, 70s and early 80s.

Earl Patterson was born on a farm in southeastern Nebraska near the town of Reynolds, on July 21, 1923, the youngest of nine unusually gifted children in a closely-knit family of four girls and five boys. Earl attended the University of Nebraska where, in 1947, after serving three years in the U.S. armed services during WWII, he received his B.S. degree in technical science, graduating first in his class. Dr. Frank Keim, long-time head of the Department of Agronomy at the University of Nebraska, and a genetics teacher who was familiar with Earl's excellent qualifications and interest in the subject, encouraged him to pursue advanced studies with Dr. E. G. Anderson, himself of Nebraska origin, at the California Institute of Technology in Pasadena. Upon Dr. Keim's recommendation, Earl's application was accepted and his graduate years were spent in the Biology Division at Cal Tech with Dr. Anderson as his mentor. He received his Ph.D. degree in genetics at that institution in 1952, and stayed at Cal Tech for another year as a postdoctoral fellow.

In 1953 Earl accepted a position in the Departments of Botany and Agronomy at the University of Illinois in Urbana. Here he was responsible for the Maize Genetics Cooperation Stock Center which had just been moved from Cornell University to Urbana. Two years later, in 1955, he became project leader of that program in the Department of Agronomy. Earlier maintenance of the maize genetic stocks at Cornell led to selection of strains that were adapted to the short growing season at Ithaca but only poorly suited to culture in the Corn Belt and most other corn growing regions. As a result, Earl Patterson's first task in his new position at Illinois was to commence the conversion of these many genetic stocks to inbred and hybrid backgrounds that were better adapted to most corn growing regions. Earl maintained the stock center through these formative years until 1966 when he relinquished his stock center responsibilities to concentrate on research. Earl's research focused on the isolation and characterization of male sterility mutants in maize. He found numerous new nuclear male-sterile mutations. When Southern Corn Leaf Blight, a disease specific to T-type male-sterile cytoplasm, struck the hybrid corn industry, seed companies reverted to manual detasselling. Earl developed a method to use his nuclear male-sterile traits to replace cms-T to avoid detasselling. Combining his male-sterile traits with various chromosomal aberration stocks, he developed a new method for producing hybrid corn seed. This work resulted in the issuing of two patents.

In 1977, Earl stepped up to fill the gap left by the retirement from teaching of the head instructor of the introductory genetics course. He was lead instructor for this course, in collaboration with faculty from the Animal Sciences Department, until 1987. The average enrollment was 80-90 students per semester.

When the Director position at the Maize Genetics Cooperation Stock Center again became vacant in 1986, Larry Schrader, then Head of the Agronomy Department at Illinois, persuaded Earl to resume management of the Stock Center. It was to the great benefit of all maize researchers that Earl returned to that position at a time when future support and direction of the center were uncertain. He continued that effort until his retirement in 1993.

Earl always gave "distribution" of seed stocks very special attention. On each request for seed, he brought to bear his encyclopedic knowledge of maize genetics lore. A request for seeds often resulted in the shipment of more packets than requested because of Earl's uncanny ability to anticipate needs and problems associated with growing and handling the items requested. All manner of useful suggestions were likely to be found in the letters that accompanied the packets of seeds requested. There is no doubt that a collection of letters that Earl has sent in response to seed requests over the years would be a valuable resource for maize geneticists.

While the Maize Genetics Cooperation Stock Center is today well supported and a thriving organization, it was not always so. In its earlier years at Illinois, funds for its operation were uncertain and often meager. With an improved internal status for the Stock Center in recent years has come increased support from the Agricultural Research Service of the United States Department of Agriculture, and in 1992 this agency assumed responsibility for operations and funding of the program. To Earl, whose labors, and sometime frustrations, have been so closely associated with the development of the Stock Center, the strong position that it has recently achieved was a source of great satisfaction and pride.

In 1958, Earl Patterson along with John Laughnan, Ed Coe, and Gerry Neuffer, talked about the possibility of an annual informal gettogether of maize geneticists and their graduate students. The first meeting was in January 1959, and took place at Allerton Park, a part of a farm facility owned by the University of Illinois and located just outside of Monticello, Illinois. There were about twelve participants at that first meeting, so few that it could be held in the quite small Oak Room in Allerton Park House. These maize meetings as they came to be called were delightfully informal and grew in numbers of participants over the years. They were presided over by Earl. He made all the arrangements for use of the facility and dates of the meetings each year. He sent out notices of meetings to potential participants and arranged for ground transportation to Allerton House. There was no prearranged program of speakers; participants would arrive on Friday evening and at that time or early the next morning Earl would talk with people interested in sharing their research experiences and in that way developed a program for the get-together. At first, there was no need for a microphone, even for the most soft-spoken individuals, but as the meetings grew in size it necessarily moved to amplification. Earl introduced the speakers, adjusted the microphone, operated the overhead, arranged for the right kind of soft chalk and erased the blackboard, all with a special finesse that earned for him the position of permanent chair of all sessions. In addition to all these things Earl presided over the gene mapping sessions usually held on Saturday evenings. As the meetings grew in size, it was recognized that some modest level of organization was needed. Earl's suggestion of establishing a steering committee for the annual meetings was approved by the maize group. Today this committee continues to serve an important function in the Maize Genetics community.

After 25 years, the maize meetings grew to such a size that Allerton House could no longer accommodate them and so, regretfully, the maize genetics community was obliged to move the meetings from this treasured site. This past March the 41st annual meeting of maize geneticists, now called the Maize Genetics Conference, was held at the Grand Geneva Convention Center in Lake Geneva, WI, with over 400 teachers and researchers in attendance. Younger members of the maize genetics group are probably not acquainted with Earl Patterson nor aware of the reverence in which the Allerton meetings are still held by their predecessors. However, they should know that it was Earl who established the original format for these meetings and successfully propagated the informal atmosphere that is still recognizable in the present-day meetings, in spite of their size.

(Reprinted from the University of Illinois memorial)

Edward Murray East, '01, M.S. '04, Ph.D. '07 Father of Modern Plant Breeding And Co-inventor of Hybrid Corn

Edward Murray East and Harry Houser Love, graduate students in agronomy, shared this office in 1904 and 1905. It became headquarters for the corn chemical composition studies and other plant breeding experiments conducted at the University of Illinois.

East, an only child, was born October 4, 1879 at DuQuoin, Illinois. He was a child prodigy and was graduated from high school at age 15. He received the first Ph.D. awarded in agronomy by the University of Illinois.

After East left Illinois for the Connecticut Agricultural Experiment Station he wrote back to Love and requested the Illinois-developed inbred lines be sent to him. These Illinois inbreds from the Chester Strain of Learning Corn were used in the first Burr-Learning double cross hybrid in 1917, and in Copper Cross, the first hybrid commercially grown in Iowa in 1924.

East is credited as the co-inventor of hybrid corn with George Harrison Shull from Princeton. In addition to the distinction as co-inventor of hybrid corn, East continued his career as a famous teacher and geneticist at Harvard University. East provided Mendelian explanations for quantitative inheritance. He directly trained 17 Ph.D. students who in turn became research leaders and mentors for hundreds of the world's leading plant breeders.

Sign to be located outside 328 Davenport Hall

12/16/99

(This copy courtesy of A. Forrest Troyer)

Х

I. FOREWORD

The Notes in this Newsletter are voluntarily shared "Conversations among Cooperators." This is not a refereed journal -- the data and ideas here are not published but are presented with the understanding that they will not be used in publications without specific consent of the authors. Cooperators provide brief technical notes, updates, mutant descriptions, segregation ratios, tables of mapping data, developmental and anatomical information and techniques, clones, biochemical functions, expression data, and the like. Comprehensive material and analyses are better directed to formal publication. Maize Cooperators have the tradition of sharing information with colleagues, not only in MNL but also in many unheralded conversations, correspondence, and shared stocks and clones. By sharing our research information, we contribute to the advancement of biology and to the power of shared technical knowledge.

Beginning in 1997, MNL became a <u>Virtual Hotletter and Linkletter</u>! Notes submitted at any time go verbatim into MaizeDB as received, flagged as future items for the next issue (http://www.agron.missouri.edu/mnl/). We progressively incorporate figures and tables, and we link the articles to database objects for user access and for the development of summaries and syntheses such as the Genelist, Maps, and Indexes. In parallel, redacting of copy (editing and formatting) in preparation for the press proceeds by desktop processing. After the deadline has passed, the print version of this issue, simply containing the Notes received to that date; the Address List; Stock Center Report and Stock List; and Maize Database, is finalized and sent to the press. Indexes to Symbols and to Authors and Names cited in this MNL issue are included. Assembly of portions of MNL that represent syntheses of information (e.g., Gene Lists and Genetic Maps) will be done periodically insofar as possible, but on a separate schedule from MNL. Syntheses will also be present in MaizeDB (http://www.agron.missouri.edu), where they can be viewed or printed by MaizeDB users.

Gifts to the Endowment Fund for support of the Newsletter have grown to well over \$125,000. Please see the listing, in the front of this issue, of donors whose generosity has made this total grow. We are all grateful for the support of our colleagues and of organizations with which we have common interests. Gifts to the Endowment Fund are very much appreciated, to assure that costs of production are met, but more importantly to underwrite distribution to deserving institutions, libraries and individuals. A bequest from Ginny Harrison to the Endowment Fund furthers our emphasis on teaching and education initiatives in MNL and on the net.

The continuity and support necessary for collecting genetic and molecular information from the literature and from individual contributions; evaluating; and preparing gene lists, maps, and similar syntheses, is made possible by the USDA - Agricultural Research Service through the MaizeDB program, of which Mary Polacco is Curator. We urge you with strongest enthusiasm to use, assess, and contribute to the database.

Shirley Kowalewski again refined and redacted the copy; pulled together diverse electronic sources and exotic scripts or performed hand entry; structured indexes; questioned quality or content; and gave the editor a quality technician's creative advice. Lou Butler and Stephanie Moore contributed with diligence and precision to many tasks, including library and literature work, processing of figures, and checking of accuracy and completeness. My colleagues Mary Polacco and Mike McMullen have never yet refused to give invaluable advice and encouragement. At University Printing Services, Yvonne Ball and the printshop staff again efficiently ensured the job was done promptly and well.

Information about the next Maize Genetics Conference, March, 2001, will be on the MaizeDB Web, and information packets will be mailed to former attendees late in 2000; others may request the mailing by addressing <u>coee@missouri.edu</u>, <u>polaccom@missouri.edu</u>, or db_request@teosinte.agron.missouri.edu. The program and abstracts are prepared from electronic submissions; some back copies are available from Coe, or see MaizeDB. Electronic submission, "Webification", and printing of abstracts is done by Mary Polacco. The Steering Committee for the 2000 Maize Genetics Conference is:

Becky Boston, Co-Chair Al Kriz Neelima Sinha Ex officio: Karen Cone, Treasurer Ben Bowen Tony Pryor Cliff Weil Marty Sachs, local coordinator Kelly Dawe Torbert Rocheford Sue Wessler, Co-Chair

Preparing notes for the next issue (Number 75, 2001)? SEND YOUR ITEMS ANYTIME; NOW IS YOUR BEST TIME. See details inside the back cover.

If you would like to subscribe to this Newsletter please use the form in the back of this issue.

Editor Coe

May you find a Unique corn in MM! Prof L.

AMES, IOWA lowa State University

Detection of the p1 expression in vegetative organs

--Cocciolone, SM, Sidorenko, LV, Peterson, T

The *p1* gene encodes a transcriptional regulator of red phlobaphene pigment biosynthesis. Expression of the *p1* gene has long been considered floral-specific, with distinct oral patterns. Two of the best-characterized alleles are *P1-rr* and *P1-wr*. A *P1-rr* allele conditions uniform red pigmentation of the pericarp, cob glumes, husks, silks, and tassel glumes. Plants carrying a *P1-wr* allele lack pericarp pigmentation, but have uniform, dark red cob glumes and pigmented margins on the husks and tassel glumes.

In order to study the tissue-specific regulation of the P1-rr allele, maize plants were transformed with various portions of the P1-rr upstream regulatory region linked to the GUS reporter gene (P::GUS constructs). Unexpectedly, plants with strong transgene expression in floral organs also had transgene expression in vegetative organs, including the coleoptile, leaves, and roots of seedlings; and the sheath, auricle, and blade of adult leaves. The intensity of GUS staining ranged from light to very dark in seedling organs and from light to moderate in adult leaves. In the coleoptile, GUS activity was primarily localized to the two lateral vascular bundles. For seedling roots, the most intense staining was at the site of lateral branch formation and in the central cylinder (pith and vascular cells) of primary, lateral, and seminal adventitious roots. Leaves of primary regenerants grown in culture boxes stained uniformly blue, while leaves from greenhouse-grown seedlings, which have a thicker cuticle, stained unevenly due to poor substrate penetration. No blue staining was observed in comparable non-transformed plant material. These patterns of vegetative transgene expression were observed in 14 out of 27 independent transformation events, suggesting that such expression is not an artifact of transgene "position effect".

Similarly, when maize plants were transformed with constructs containing the P1-rr promoter driving either P1-rr or P1-wr cDNA sequences (P::P constructs), the transgenes promoted pigmentation in the expected floral organs-pericarp, cob, husk, silk and tassel glumes, as well as in the vegetative organs of plants that had strong transgene expression in floral organs. Non-floral pigmentation was observed in the leaf midrib, sheath, ligule and auricle; in the pith of the culm; and in the lateral veins of the coleoptile. No pigment was discernible in the leaf blade, except for in the midrib. Interestingly, this pattern of transgene expression is comparable to that caused by Ufo1 (unstable factor for orange), a dominant allele that induces phlobaphene production in vegetative organs when combined with a P1-wr allele (Styles et al., MNL 61:100, 1987). Similar to Ufo1, strong transgene expression that results in dark vegetative pigmentation is associated with retarded plant growth.

The expression of P::GUS and P::P transgenes in vegetative organs prompted examination of non-transgenic plants for endogenous p1-conferred vegetative pigmentation. Indeed, P1-rr plants have a light orange tint to the leaf midrib, auricle and ligule that is absent in *P*-ww plants of the same genetic background. Also, a light orange uniform sheen can be observed on the adaxial surface of the sheath of P1-rr plants, especially after the plants have dried. No P1-rr-regulated pigmentation was visually discernible in the leaf blade, lateral veins of the coleoptile, or roots. Scrutiny of P1-wr plants for pigmentation revealed red sheath

and auricle margins; this phenotype is analogous to the pigmented margins of *P1-wr* husk and tassel glumes. Thus, vegetative pigmentation patterns conferred by *P1-rr* and *P1-wr* alleles (uniform vs. marginal, respectively) are consistent with the allele-specific patterns of the floral organs.

Our observation of p1 expression in vegetative organs is further supported by biochemical and molecular analyses. D. Styles and O. Ceska (Can J Genet Cytol 23: 691-704, 1981) reported detection of p1-regulated 3-deoxy flavonoids in coleoptiles, and we reproducibly observe very low levels of p1 transcript in coleoptiles and auricles by RNA blot analysis. Through the use of a more sensitive rt-PCR method, we were able to detect transcripts in other vegetative organs. The primer set used for the PCR reactions is complementary to p1, as well as p2, a recently identified p1 gene homolog (P. Zhang, personal communication). Amplification products of the p1 and p2 transcripts can be distinguished by size due to an 80 bp deletion in the 5' untranslated region of p2. Amplified products corresponding to p1 mRNA were detected in coleoptile, seedling leaf, seedling root, and sheath from P1-rr and P1-wr plants, while no p1-specific amplification products were detected in P1-ww samples. Taken together, these results indicate that the endogenous p1 gene is expressed at low levels in vegetative organs, suggesting that p1 gene expression is floral-preferred rather than floral-specific.

Putative allele test for a Mutator-tagged zebra stripe mutant --Heck, DA, James, MG, Chitnis, PR

Photosynthetic mutants of maize provide numerous opportunities for analyzing photosynthetic pathways at the biochemical level. We have identified a recessive zebra stripe mutant, zb*97-2306, that arose while performing transposon-tagging with Robertson's Mutator. We subsequently performed several allele tests to determine whether or not zb*97-2306 was allelic to any of the known zebra stripe mutants. We crossed zb*97-2306 with the following zebra stripe mutants from the Maize Cooperation Seed Stock Center: zb1 (U340B), zb3 (519G), zb4 (105B), zb6 (408C), and zb7 (127A). (It has been previously determined that zb2 (U340C) and zb3 (504C) are allelic to zb1 (U340B) (Steve Szalma, Karen Cone, and Phil Stinard, personal communication) and we have subsequently confirmed this). Our zebra stripe mutant was allelic to zb7 but the frequency of expression was low. We are currently testing the influence of environmental factors including variances in temperature and light on the expression of the zb*97-2306 phenotype.

The authors would like to acknowledge the Chitnis group for helping with the general fieldwork related to this project.

BEIJING, CHINA

Institute of Genetics, Academia Sinica

Studies on types of space induced variations in maize (Zea mays L.)

--Zeng, M, Yang, T

In our previous paper it was described that the space flight of seeds has significant influence on photosynthetic pigment contents and leaf ultrastructure in maize (*Zea mays* L.). This paper deals with the different types of space induced variations and their distribution in maize.

Mutants obtained from sp1 (first generation by space treatment) to sp5 showed that amplitude of variability for space induced variations was large enough. Five type mutants for space induced variation were obtained, they are: special high plant mutant; special dwarf plant mutant; mutant of resistance to *H. maydis* and *H. turcicum*; mutant for three-ears with synchronous silking character per plant; mutant for *sh2* kernel type from flint or dent type. The various types of mutants are described as follows:

1. Special high plant mutant was from the inbreds of U8112 and 311. Compared with normal lines, it had a sufficency increase of 71% in plant height; a significant increase of 52% in ear length and 36% in kernel length. Mutation frequency of the mutant is 31% (see Fig. 1).

2. Special dwarf plant mutant was from Yi01-4-1. Mutation frequency of the mutant is 5%.

3. Mutant of resistance to *H. maydis* and *H. turcicum*: Mutation frequency of the mutant is 1%.

4. Mutant for three-ears with synchronous silking character per plant: The three-ears per plant silks at the same time, synchronism for silking and spread pollen of tassel. Mutation frequency of the mutant is 0.4% (see Fig. 2).

Figure 1. Maize kernels (1) CK U8112, (2) mutant for special high plant.

Figure 2. Maize ears (1) CK Yizi24, (2) mutant for three-ears with synchronous silking character per plant.

5. Mutant for *sh2* kernel type from flint or dent type: mutation frequency of the mutant is smaller, about 5%.

Analysis on new CMS types Bao I, Bao II in maize (Zea mays L.) --Yan, Z, Zeng, M, Yang, T

The purpose of this paper is to present the results of the analysis and determination on new CMS types Bao I, Bao II in maize (*Zea mays* L.). Population 157 was used for breeding and selection experiments, 86 inbred lines from various provinces of China and different countries were used for determinative materials in test cross and inoculation experiments with *H. maydis*, *H. turcicum*.

The new types of cytoplasmic male sterility Bao I, Bao II were bred by using the approaches of self pollination, selection and inoculation determination etc. In test-cross of 86 inbred lines to Bao I type, 45 inbred lines were restored to fertility, covering 52.3% of the total tested lines, nine were partly restored to fertility, covering 10.5%, 32 lines kept up sterility, covering 37.2%. In test cross of 80 inbred lines to Bao II type, all tested lines kept up sterility (see Table 1).

	Cytoplasm		
Item	Baol	Bao II	
Full restoration (_)	45 lines	0	
Partial restoration (±)	9 lines	0	
Full maintenance (_)	32 lines	80 lines	

The results obtained from evaluation of resistance to Helminthosporium maydis have shown that E157-cms-Bao I is infected with race 0, but resistant to race T, quite resistant to

Table 2. Evaluation of resistance to s	southem blight disease (H.)	maydis)
--	-----------------------------	---------

	Race O			Race C			Race T		
No.of line	Disease degree	Disease state coefficent	Resistance	Disease degree	Disease state coefficent	Resistance	Disease degree	Disease state coefficent	Resistance
E157-cms-Bao I	4.0	78.71	S	0	0	Q.R	1.0	20.1	R
E157	4.0	77.00	S	0	0	Q.R	1.0	21.1	R
U8112-cms-Bao I	3.0	57.85	m.s	0	0	Q.R	0.5	13.2	H.R
U8112	3.0	57.42	m.s	0	0	Q.R	0.5	13.5	H.B
M017-cms-Bao I	1.0	18.33	R	0	0	Q.R	0.5	8.9	H.R
M017	1.0	18.38	R	0	0	Q.R	0.5	9.2	H.R
F157-cms-Bao II	4.0	78.13	S	0	0	Q.R	1.0	21,2	H.R
F157	4.0	77. 93	S	0	0	Q.R	1.0	22.3	R
U8112-cms-Bao II	3.0	51.03	m.s	0	0	Q.R	0.5	11.5	HR
U8112	3.0	51.11	m.s	0	0	Q.R	0.5	11.3	H.R
478-cms-Bao II	0.5	11.92	H.R	0	0	Q.R	0.5	9.8	H.R
478	0.5	11.85	H.R	0	0	Q.R	0.5	9.7	H.R
Zhongdan 2(cms-Bao I)	0.5	12.22	H.R	0	0	Q.R	0.5	10.5	H.R
Zhongdna 2(N)	0.5	11.85	H.B	0	0	Q.R	0.5	9.8	H.R

Notes: R...Resistance; H.R...High resistance; S...susceptivity; m.s...mid-susceptivity; Q.R...Quite resistant.

race C; F157-cms-Bao II is mildly infected with race 0, but highly resistant to race T, quite resistant to race C. Resistance of CMS lines and its maintainer is the same (see Table 2).

BERGAMO, ITALY Istituto Sperimentale per la Cerealicoltura KÖLN, GERMANY Max-Planck-Institut für Züchtungsforschung

Developmentally regulated and tissue-specific expression of the glossy2 gene of maize

--Velasco, R, Korfhage, C, Salamini, A, Tacke, E, Schmitz, J, Motto, M, Salamini, F, Döring, HP

In maize, a large system of genes mapping at 17 separate loci (the glossy or gl loci) has been identified that affect the quantity and/or composition of cuticular waxes on the surface of the seedling leaves (Bianchi et al., Maydica 30: 179-198, 1985). Mutations at the GI2 locus reduce the amount of surface wax to one-fifth of wild-type levels in the first to sixth plant leaves (Bianchi et al., Maydica 20: 165-173, 1975). While waxes of gl2 plants have a chemical composition similar to those of adult leaves, seedlings homozygous for this mutation accumulate wax compounds two to four carbons shorter compared to wild type. Data available indicate that the Gl2 gene product could be specifically involved in the chain elongation step from C₃₀ to C₃₂ (Bianchi et al., 1975). The Gl2 locus was recently cloned and shown to encode a polypeptide of 426 amino acids of unknown function (Tacke et al., Plant J. 8: 907-917, 1995). Because waxes play a role in resistance of plants to environmental stresses their biosynthesis and secretory processes have relevance both to basic and applied studies. We have considered in this study several regulatory aspects concerning the expression specificity of the Gl2 gene.

The expression of the gene was analysed on the RNA and protein level. The *Gl2* gene is transcribed in young leaves, in coleoptiles, in husks, in immature ears and in silks of wild type plants. No transcripts were found in roots of wild type plants or in tissues of plants homozygous for a recessive *gl2-ref* allele. Antibodies against the GL2 protein revealed predominant presence in the leaves with a juvenile wax phenotype. Protein detection was consistent with transcriptional activity of the gene in wild type coleoptiles, husks, immature ears and silks but not in roots, anthers and seeds. Sequence data bank analysis revealed homologies of the GL2 protein of maize with eighteen sequences from several plant species.

A domain of 27 amino acids is highly conserved in the proteins plant of different species. This domain, PLx3QxTxFxCGGx8Hx3D, is novel and with a function still unknown. Interestingly, the domain is present in the four proteins found in Clarika breweri, Cantharanthus roseus, Gentiana triflora and Dianthus caryophyllus which are credited to have a coenzymeA-dependent acyl transferase activity. Based on this finding, already St. Pierre et al. (Plant J. 14: 703-713, 1998) proposed that the GL2 protein belongs to plant proteins which function as acetyl transferases, an enzymatic activity which has still to be demonstrated for al2.

For the *Gl2* gene the highest sequence similarity was observed with the *Cer2 Arabidopsis* gene, having both gene mutant alleles conditioning a defect in wax biosynthesis (Tacke et al., 1995; Negruk et al., Plant J. 9: 137-145, 1996). Their mutant waxes are defective in the accumulation of C_{30} and C_{32} fatty acids, respectively. The fact that both mutants are defective in the last step of fatty acid elongation might indeed support a role of *Cer-2* and *Gl2* genes in acyl-CoA-dependent fatty acid biosynthesis. This putative role of *Gl2* and *Cer-2* as structural genes involved in wax biosynthesis, integrates the current knowledge on this process based on molecular studies of the *Gl1* and *Gl8* maize loci. These genes exhibit sequence similarities to other plant wax synthetic genes coding a putative transfer protein (Hansen et al., Plant Physiol. 113: 1091-1100, 1997) and a B-ketoacyl reductase (Xu et al., Plant Physiol. 115: 507-510, 1997). It is interesting to note that all the putative proteins with homology to the GL2 protein contain from 420 to 470 amino acids. This detail may indicate their common origin from a precursor gene, which later on evolved acquiring specific functions in different biochemical pathways.

BERGAMO, ITALY Istituto Sperimentale per la Cerealicoltura WAGENINGEN, THE NETHERLANDS Keygene N.V.

Identification of QTLs for grain yield and grain-related traits of maize using an AFLP map, different testers, and cofactor analysis --Ajmone Marsan, P, Redaelli, R, van Wijk, R, Stam, P, Motto, M

In the last decade the advent of molecular markers has greatly facilitated the systematic dissection of quantitatively inherited traits into their underlying Mendelian factors (QTLs). This has provided the tools to speed up plant improvement for a variety of criteria, including yield, by the generation of fine-scale molecular genetic maps to undertake marker-assisted selection (MAS) and positional cloning (Lee, Adv. Agron. 55: 265-344, 1995). In maize, extensive genome mapping based on DNA restriction fragment length polymorphism (RFLP) markers has been accomplished (Coe et al., Maize Coop. Genet. Newsl. 69: 191-267, 1995). These maps and their associated technology have been used successfully for a number of applications in genetic research and breeding. However, the use of RFLPs in a QTL analysis is an expensive and time-consuming process.

The development of the polymerase chain reaction (PCR) has expanded the repertoire and efficiency of DNA marker systems, which include the AFLP method (Vos et al., Nucleic Acids Res. 23: 4407-4414, 1995). The advantage of AFLP assay over other DNA marker techniques includes the detection of a large number of polymorphisms from a single PCR reaction, within a very short period of time, and the requirement for small amounts of DNA, thus reducing expenses and expediting the construction of highdensity linkage maps. Accordingly, as a first step in exploiting AFLPs in a maize genome mapping program, and in the long-term for MAS and positional cloning, we have used AFLPs to identify QTLs for grain yield and grain-related traits in maize F2 lines using different testers and biometrical procedures.

Two-hundred-twenty-nine F3 progenies, each tracing back to an individual F2 plant, derived by crossing the inbred lines B73 and A7 were used. This population has been described previously to construct an RFLP linkage map (Ajmone-Marsan et al., Theor. Appl. Genet. 90: 415-424, 1995). The protocol adopted for the generation of AFLP markers was essentially the same as that described by Vos et al. (Nucleic Acids Res. 23: 4407-4414, 1995) and by Castiglioni et al. (Theor. Appl. Genet. 99: 425-431, 1999). Basic field experimental procedures were as described earlier (Ajmone-Marsan et al. 1995). Cultural conditions were kept as close as possible to the optimal growth conditions in order to achieve high yield levels. The two series of testcross (TC) progenies were evaluated in field trials for grain yield (t/ha at 15.5% grain moisture), dry matter concentration (% grain dry matter at harvest), and test weight (kg/hl measured at harvest). A linkage map for B73xA7 was assembled by MAPMAKER as previously reported (Castiglioni et al. 1999). Among the 312 RFLP and AFLP markers located on the B73xA7 map, 195 evenly spaced markers belonging to the framework map, and corresponding approximately to a marker every 10 cM, were used for QTL analysis.

QTL analyses were performed on mean values of each trait across environments for each experiment involving the two series of TC progenies and using linkage information. For the analysis of linkage between QTLs and molecular markers the simple interval mapping (SIM) (Lander and Botstein, Genetics 121: 185-199, 1989) and the composite interval mapping (CIM) (Jansen and Stam, Genetics 136: 1447-1455, 1994) statistical methods were used.

The efficiency of generating AFLP markers was substantially higher relative to RFLP markers in the same population, and the speed at which they were generated showed a great potential for application in marker-assisted selection. AFLP markers covered linkage group regions left uncovered by RFLPs; in particular at telomeric regions, previously almost devoid of markers. This increase of genome coverage afforded by the inclusion of the AFLPs revealed new QTL locations for all the traits investigated and permitted mapping of telomeric QTLs with higher precision. The present study has also provided an opportunity to compare SIM and CIM for QTL analysis. Our results indicated that the method of CIM employed in this study has greater power in the detection of QTLs and provided more precise and accurate estimates of QTL positions and effects than SIM.

By the use of selected cofactors, which absorb a major part of the background noise due to other putative QTLs, CIM has allowed the detection of a higher number of QTLs. In some cases also CIM simply increased existing LOD peaks beyond the threshold values. In other situations CIM detected significant QTLs where SIM LOD profiles were almost flat. Furthermore, CIM reduces the significance of QTLs overestimated by SIM. In addition, the R₂ values for the simultaneous fit were always higher with CIM and showed a higher value of substitution effects of unfavourable alleles with favourable ones. Hence, advanced statistical methods promise to make an important contribution for improving the prospects of MAS without any additional cost.

The experimental mating design adopted in our experiment was based on two different tester lines. In this study we found that QTLs revealed by one tester may not be detected with the second one. For all traits and both testers we detected a total of 36 QTLs, of which only 2 were in common between testers. These findings indicate that the allelic compositions of a tester line determine whether a QTL segregating in a population will be detected. In fact, the number of QTL associated with grain yield and yield-related traits detected in this study largely depends on the tester under study. In conclusion, our results suggest that the choice of tester for identifying QTL alleles for use in improving an inbred is critical and expression of QTL alleles identified may be tester specific.

BLACKSBURG, VIRGINIA Virginia Tech

A β -glucosidase aggregating factor (BGAF) is a member of the small heat shock protein family (sHSP)

--Blanchard, D, Esen, A

In certain maize (*Zea mays* L.) genotypes β -glucosidase occurs as large insoluble or poorly soluble aggregates (Esen and Cokmus, 1990. Biochem Genet 28: pp 319-336). The β -glucosidase zymograms of such genotypes are devoid of enzyme bands after being stained for activity. These genotypes were originally thought to be homozygous for a null allele at the *glu1* locus. However, biochemical data (Esen and Blanchard, 2000. Plant Physiology 122: Feb) from our laboratory clearly establishes that the monogenic inheritance reported for the null alleles at the β glucosidase gene is actually for the BGAF protein. We also show that BGAF is solely responsible for β -glucosidase aggregation and insolubility, and thus, the apparent null phenotype. The objective of the present study was to clone and identify BGAF.

BGAF was extracted four times from 8 g of 3-d-old H95 etiolated shoots in 50 mM NaAc buffer, pH 5.0, containing 30 % ammonium sulfate (AS). The final pellet containing primarily free BGAF was solubilized in 50 mM NaAc buffer, pH 5.0 and immediately applied to a gel filtration column (Sephacryl HR 200, 90cm x 16mm). Fractions containing BGAF were identified by ELISA and pooled for hydrophobic interaction chromatography. BGAF was then applied to a ToyoPearl-butyl 650M hydrophobic interaction chromatography at 0.8 M AS in 50 mM NaAc buffer, pH 5. The column was washed with 0.8 M AS in NaAc buffer until baseline was reached. Stepwise elution was performed by reducing the ammonium sulfate concentration in 0.1 M increments. Fractions were screened for BGAF by ELISA, pooled, and concentrated 12-fold on a 10 K cut-off spin column (Gelman Sciences).

Purified BGAF (~250 pmoles) was submitted to Commonwealth Biotechnology for N-terminal sequencing. The Nterminal sequence was identified to be: [V, ?] [I, E] [G, P] [N, L] YAPIGIGATV. Therefore, the peptide APIGIGAT was used to design two degenerate primers; BGAF-6, CCNATHGGNATHGGNGC BGAF-7, CNCCNATHGGNATHGGNGC.

H95 seedlings were germinated in the dark for 2 days at 30 C in wet vermiculate. Whole shoots were harvested with a razor blade and used immediately for RNA isolation. mRNA was isolated using oligo dT coated magnetic beads. An Oligo dT primer (RT-3) was used for first strand cDNA synthesis with AMV-reverse transcriptase. To amplify the BGAF cDNA, BGAF-6 and BGAF-7 were individually paired with RT-3 in separate PCR reactions. The 1 kb PCR product generated was reamplified with pfu Turbo DNA polymerase, gel purified, and blunt-end cloned into pBlue-script® II SK (+/-) for sequencing in both directions.

The sequence was used to perform a BLAST search in the maize EST database. The BLAST search exclusively identified heat-shock proteins, which matched with similarities ranging from 56% - 96%. The extreme 5' end of BGAF was obtained by overlapping the BGAF sequence with the highest match (96%) in the EST database. The identity of the 5' end sequence obtained by overlap was corroborated by reamplification of the H95 cDNA using a primer designed from the extreme 5' end of the EST sequence paired with a BGAF specific 3' end primer.

5

MVSLQVTPTSAFTEWNELKFEGLYLFHTPLGSGANQARVI DNKAFIGIGATVVNNWTVCDGPGPNAKLIARAQGLHIQAG NWVNSFSLVFVDQRFSGSPLEVTGIVVESGEWAIVGGTGQ FAMANGVISKKLHGKTSEGDIIQLTIHAFCPVLGATKRSVT KVGPWGGSGGSPMDITAEPQRLKSITVATGIAVTSIAFSYV DSAGQTQSAGRWGGSGGETEPVIQLGDSEVLTELSGTIGN VDGLTVITSIKFVTSLKTYGPFGAWGNGSDTPFAIPVQQGS AIVGFFARAGVYLDALGVYVRSL.

Figure 1. Deduced primary structure of the BGAF cDNA. The open reading frame of BGAF encodes a 306-amino acid-long mature protein. The N-terminal protein sequence from which degenerate primers for RT-PCR were designed (arrow, gray box) is shown. The fact that the N-terminal sequence obtained is an internal polypeptide is likely due to an endogenous protease in maize.

The identity of the putative BGAF cDNA was shown following its expression in *E. coli*. Western blots of *E. coli* expression extracts probed with BGAF antiserum showed an immunoreactive band whose electrophoretic mobility and molecular size were identical to BGAF isolated from plant extracts. Additionally, functional assays clearly showed the presence of BGAF in *E. coli* expression extracts, which tested positive for β -glucosidase binding activity in gel-shift assays.

BGAF has a 1143-bp long cDNA sequence, which includes a 918-bp coding sequence, and a 172-bp 3' untranslated region. The incomplete 5' untranslated region is 53-bp long.

The deduced protein has an open reading frame (the 918 bp coding region) encoding a 306- amino acid-long mature protein with a calculated molecular mass of 31.8 kD (Fig. 1). BGAF has a calculated isoelectric point of 6.00, consistent with the experimental isoelectric point.

BUFFALO, NEW YORK Williamsville North High School State University of New York LONDON, ONTARIO University of Western Ontario

Abnormal node development in na1/na1

--Cheng, W, Cheng, P-c, Walden, DB

The phenotype of *na1/na1* is characterized as dwarf plant. The dwarf character is associated with an abnormal development in the stem. Instead of the well-defined nodes and internodes found in the normal wild type stem, *na1/na1* develops a stem lacking organized nodal and internodal vasculature. Different from the parallel longitudinal vascular bundles found in the internode of wild type, *na1/na1* has a poorly structured arrangement. In addition, the interconnecting vascular bundles are not limited to the nodal region as found in the wild type, but can be found at any level of the stem (arrows).

Figure 1 is a longitudinal section of a *na1/na1* stem showing the stem with the aforementioned features. The plant was grown in 1999 summer nursery at the field station of University of Western Ontario, London, Canada. The specimen was fixed in 1:3 acetic acid/ EtOH, stained in diluted Schiff's reagent (10%), washed in 0.1 M metabisulphate solution (with 1 ml of 1 N HCl per liter), dehydrated in EtOH and cleared in methyl salicylate. Note the vascular bundles extend into the leaves but are not connected to a nodal structure (double-arrows).

Figure 1.

CEDAR FALLS, IOWA University of Northern Iowa EMPORIA*, KANSAS Department of Biological Sciences

Inflorescence development in a Toluca teosinte

--Orr, AR, Mullen, K, Klaahsen, D, Sundberg*, MD

A previously undiscovered natural wild population of annual teosinte plants in the Valley of Toluca, Mexico, appears similar to a Chalco teosinte population found in the eastern Valley of Mexico (Wilkes and Taba, MNL 67:21, 1993), although no race assignment has been made to date (Vibrans and Estrada Flores. Maydica 43: 45-48, 1998). The wild Toluca population at 2500m-2750m is somewhat unique because it grows 100 m higher than the highest Chalco teosinte at Amecameca in the Valley of Mexico (Vibrans and Flores, 1998), and is higher than the Balsas teosinte at 800 m to 1950 m (Wilkes, Crop Improv. 6: 1-18, 1979). The use of highland maize on approximately 2.8 million hectares in central Mexico and its use as a germplasm for improving maize for tropical highlands (Eagles and Lothrop, Crop Sci. 34: 11-19, 1994) has enhanced an interest in the origin of highland maize races. Toluca teosinte is able to survive to the reproductive stage in, and adjacent to, fields of maize because of its excellent maize mimicry (Wilkes and Taba, 1993) and thus, maize-Toluca teosinte hybrids are common (Vibrans and Flores, 1998). The concept that teosinte and maize hybridization participated in the evolution of maize, and the maize ear, is not a recent discovery (see Wilkes, 1979; Iltis, Science 222; 886-894, 1983). Molecular evidence supports the idea that maize is derived from teosinte and indicates that a low altitude Balsas teosinte, Z. mays subsp. parviglumis, may be the ancestral taxon (Doebley, Econ. Bot. 44: 6-27, 1990). However, it is not unreasonable to imagine that some highland teosinte population (eg., a Chalco teosinte, Z. mays subsp. mexicana) also might have contributed to the early evolution of highland races of maize (Galinat, Adv. Agron. 47: 203-231, 1992; Eagles and Lothrop, 1994). Eagles and Lothrop (1994) argue that highland maize probably came from higher altitude populations - an argument that is supported by Wilkes (1979). A fundamental idea in this scenario is that the genetic basis for temperature adaptation existed in wild maize before domestication.

Although the origin of the maize ear is still not unequivocally known, researchers investigating teosinte inflorescence development have revealed a developmental pattern common to all Zea (maize and teosinte) inflorescences (Sundberg and Orr, Amer., J. Bot. 77: 141-152, 1990). However, key developmental features have been uncovered that differentiate ears from tassels and teosinte inflorescences from maize inflorescences (cf. Fig. 25, Orr and Sundberg, Amer. J. Bot. 81: 598-608, 1994). It is especially interesting that one observation in these investigations disclosed a key organogenic event to account for the evolution (distichy to polystichy) of a multiple-ranked maize inflorescence from a tworanked inflorescence. A key trait in the evolution of the maize inflorescence, acquisition of polystichy, may have arisen from a change in a developmental program that regulates the spikelet pair primordia condition. Spikelet pair primordia in teosinte and maize give rise to two spikelet primordia only. In the "standard exotic" maize (Argentine popcorn) two inflorescence phenotypes were observed: intermediate distichy/polystichy (two-ranked and four-ranked), and wild type four-ranked polystichous inflorescences (Sundberg, LaFargue and Orr, Amer. J. Bot. 82: 64-74,

1995). In the intermediate phenotype the distichy condition was distal to the polystichy condition: the proximal portion of intermediate inflorescences bore eight rows of spikelets in four ranks. and the distal segments produced four rows of spikelets in two ranks. In wild type teosinte and maize inflorescences the apical meristem first produces spikelet pair primordia, each of which bifurcates to produce paired spikelet primordia. In the intermediate inflorescences of Argentine Popcorn a second cycle of bifurcation facilitates a switch from a two-ranked (distichy) condition to a four-ranked (polystichy) condition. Perhaps the origin of polystichy in maize was derived from a change in developmental regulation of meristem determinacy (Sundberg, et al., 1995). Regulation of maize inflorescence meristems that produce an additional number of meristems has been reported (Orr, Haas and Sundberg, Amer. J. Bot. 84: 723-734, 1997; Chuck, Meeley and Hake, Genes Dev. 12: 1145-1154, 1998; Lenhard and Laux, Cur. Opin. Plant Bio. 2: 44-50, 1999).

We used scanning electron microscopy to characterize the organogenesis of Toluca teosinte inflorescence, and to compare the development to other *Zea* inflorescences. Seed from the CIMMYT Maize Germplasm Bank was kindly given to us by Sukitoshi Taba. Plantings were made in a growth chamber under a long day, 15:9 hr light/dark cycle, and at the V5 (fifth vegetative leaf) stage plants were shifted to 8:16 hr light/dark cycle. Congruent with the light/dark cycle, the temperature was maintained at 24:18 C. Light intensity was maintained at 600-700 uE

Fig. 1. SEM of developing Toluca teosinte ear with two (distichous) ranks. One rank is hidden behind the central axis. Spikelet pair primordia have divided into paired spikelets. At the base of the right row note the reduction in growth (and eventual abortion) of the pedicellate spikelet.

Fig. 2. SEM of developing Toluca tassel with four (polystichous) ranks of spikelet pair primordia. One rank is hidden behind the axis.

m⁻² sec⁻¹ (PAR). Our SEM examination of approximately 35 developing ears confirmed that in most ears (33/35) spikelet pair primordia were produced in two ranks (Fig. 1). However, rather than the expected pure distichy pattern in tassels most (25/30) spikelet pair primordia were produced in either three or four ranks (Fig. 2). As we expected, Toluca spikelet organogenesis in tassels and ears followed a pattern previously described in other teosintes. Each spikelet produced an upper and lower floret primordia, and each floret primordia produced three stamens and a gynoecium. Femaleness in Toluca spikelets was marked by the abortion of the lower florets and the abortion of the stamens in the upper florets. Male Toluca spikelets were marked by a retention of the lower florets, and an abortion of the gynoecium in both the upper and lower florets. This supports the hypothesis that both femaleness and maleness in teosintes are derived from and expressed on a common background (cf. Fig. 25, Orr and Sundberg, 1994). However, unlike the paired spikelet condition in Toluca tassels, Toluca ears displayed solitary sessile spikelets derived from arrested growth and abortion of pedicellate spikelets (Fig. 1). The abortion of pedicellate spikelets in female inflorescences was observed in other teosinte ears (Orr and Sundberg, 1994). This is further evidence that this morphological marker is sufficient to discriminate, at a very young developmental stage, teosinte inflorescences sexually and teosinte ears from maize ears.

The most striking observation in this study of Toluca inflorescences was the occurrence of intermediate (distichous and polystichous) and pure polystichous tassels, and intermediate ears. In the population of 30 tassels we examined ten were intermediate, and 15 were 100 percent, four-ranked polystichous (Fig. 2). In the intermediate state, tassels (Fig. 3) and ears (Fig. 4) exhibited the distichy condition at the distal end of the inflorescence. This morphological intermediate phenotype is similar to that noted above for maize Argentine Popcorn (Sundberg, et al., 1995). In female inflorescences no purely polystichous ears were observed, and only two, three-ranked intermediate ears (Fig. 4) were noticed in the population of 35 we surveyed. It remains unclear why the frequency of additional ranks in the inflorescences of the Toluca population is much lower in the ear than the tassel. Also, it is obscure why an inflorescence meristem that initially produced three or four ranks shifted to make two ranks. We are currently examining additional Toluca inflorescences for evidence of the polystichous condition.

In each of the intermediate ears the distal portion of the inflorescence was distichous with two ranks of lateral primordia. In one ear a third rank arose at the fifth node from a division of a spikelet pair primordium at the fourth node (Fig. 4, arrow), suggesting that a second bifurcation of the original meristem resulted in two ranks of spikelet pair primordia. Thus, one rank with a potential for two rows became two ranks that resulted in four rows. A three-ranked, six rowed female inflorescence resulted. There is some evidence suggesting an additional bifurcation of each original spikelet pair primordia probably was a key event in the switch from distichy to polystichy in the evolution of a maize ear from a teosinte ear (Sundberg, et al., 1995). The other ear that exhibited an intermediate condition produced a partial third rank de novo on the adaxial surface of the inflorescence (Fig. 5). Intermediate and polystichous tassels exhibited both three and four ranks. Pure polystichous, eight rowed tassels arose from the formation of four ranks of spikelet pair primordia arranged in a decussate pattern (Fig. 6). A six rowed tassel or ear produced only three ranks of spikelet pair primordia with primordial ranks shifted toward the abaxial side. Additional rows (ranks?) in the proximal region of intermediate tassels appear to arise from a second bifurcation of lateral primordia (Fig. 3, arrow), or were derived from a de novo event (Fig. 7, arrow). It is also apparent in Fig. 7 that these de novo primordia divide into rows of paired spikelets. It would appear that these de novo primordia function as spikelet pair primordia. Quite possibly, but speculatively, the occurrence of these natural intermediate and pure polystichous inflorescences were the result of introgression between maize and Toluca teosinte. If this view is correct, this is the first developmental inflorescence study of a natural maize-teosinte hybrid and thus, may offer insight into the effect(s) on inflorescence development when different developmental programs are recombined in maize-teosinte hybrids. Interestingly, the first backcross of maize following F1 maize x teosinte hybridization resulted in polystichous ears (see Fig. 11B, Wilkes, Econ. Bot. 31: 254-293, 1977).

Finally, our studies provide evidence that unique phenotypes may arise in a hybrid population. In addition to the de novo spikelet pair primordium we noted above, we also found some tassels with three spikelets, rather than the usual two found in teosinte and

Fig. 3. An intermediate Toluca tassel with four ranks (eight rows) of spikelets on the lower twothirds of the central axis, and two distal ranks of primordia on the upper third of the inflorescence. Two ranks (four rows) are partially hidden behind the axis. Basal tassel branches were removed to fully reveal the central axis. Proximal spikelets are characterized by outer and inner glumes. Note the basal spikelets include an outer lemma. Additional rows (ranks?) appear to arise from a second division of a lateral spikelet pair primordia (arrow).

Fig. 4 An intermediate Toluca ear with three ranks. The plane of distichy at the distal end is approximately at a right angle to the photo. A third rank is somewhat visible along the back, right edge of the axis. The central rank appears to arise from a division of a spikelet pair primordium. An older proximal primordium has undergone a second division resulting in two rows of spikelets.

Fig. 5 A polar view of a developing intermediate Toluca ear with three ranks of spikelet pair primordia. Note the apparent de novo production of a third rank (arrowhead).

Fig. 6 A polar view of a pure polystichous Toluca tassel with four ranks of spikelet pair primordia along the central axis. A bifurcation of these primordia is seen at the proximal end of the inflorescence. Basal lateral branches with a distichous arrangement of spikelet pair primordia are apparent

Fig. 7 A central spike of an intermediate Toluca tassel. Basal tassel branches were removed to fully reveal the central axis. This specimen shows an apparent de novo formation of an additional rank of spikelet pair primordia (arrow). Note the bifurcation of this additional rank of spikelet pair primordia in the formation of paired spikelets.

maize. A similar occurrence of the latter was noted in other studies of inflorescence development: F_3 plants derived from a cross of Race Reventador maize by *Z. Mays* subsp. *parviglumis* teosinte (see fig. 5, Doebley, Exp. Mol. Approch. to Plant Syst., Mo. Bot. Gard. 53: 57-70, 1995); the maize mutant *Fascicled ear* (Orr,

Haas and Sundberg, 1997); the primitive maize Chapalote (Sundberg and Orr, Amer. J. Bot. 83: 1255-1256, 1996); and the primitive maize Argentine Popcorn (Sundberg, et al., 1995).

CHESTNUT HILL, MASSACHUSETTS Boston College

Continued studies on mutable inbred derived from anther culture --Ting, YC, Tran, L

In the last summer continued studies on the mutable inbred derived from anther culture of maize KH-13 were carried out. This inbred was a descendant from a single self-fertilized plant which was dark green in plant color and normal in fertility for both male and female flowers. A total of 120 kernels was sown in the field and from them 102 plants grew into adult stage. However, it was observed that when the plants were about two-months old, approximately 10 percent, nine plants, appeared slow in growth and short in height. About two weeks later, these short plants became dwarf vellow-green. Apparently their leaf chlorophylls were deficient. All except one, of these plants had barren stalk and sterile male inflorescence. The exceptional plant developed a small ear and a limited amount of pollen. Upon self-pollination, seven defective kernels were obtained. A test on their viability will be made in the next season. As was stated above, nine of 102 plants were phenotypically dwarf yellow-green. According to the Mendelian segregation principle, this was unexpected. It does not fit the expected segregation ratio of either monohybrids or dihybrids. Hence, a hypothesis was once again proposed that the unconventional segregation ratio was evidence of the presence of an Ac element in the parental plant. This element was activated through anther culture per se.

Effect of day length on the expression of maize cloning gene

--Ting, YC, Tran, L

Maize cloning gene was previously named tassel plant gene, is one of the apomictic genes in maize and its relatives. In 1946, Singleton (J. Hered. 37) coined this gene *id* due to its indeterminant growth habit. Colasanti et al. (Cell 93:1998), by molecular analysis, identified about 10 *id1*-like genes in maize. The cloning gene reported in the present communication may be one of these genes, because phenotypically they are alike. However, this cloning gene appeared dominant and the plantlets could grow into adult plants and reproduce next generation like the parental plant. With regards to these characteristics which are different from those of the other *id* genes, therefore the name cloning gene, *Clg* for short, was adopted. In view of this, respect for priority of genetic nomenclature is not overlooked.

Regarding the effect of day length on the expression of cloning gene, results of some previous studies (Singleton, J. Hered. 37, Shaver, J. Hered. 58) varied. In order to make further investigation on this effect, two dozen plants from a cross between a plant heterozygous for *Clg* and a plant homozygous for *clg*, were grown in the greenhouse last March. In June all of these plants were transplanted to the field and 22 of them survived. Among them, 10 vigorous plants were selected in July and treated with short-day illumination daily (8-hour light, 16-hour dark) for four weeks. The other plants, 12 in number, grew under long-day illumination (16-hour light, 8-hour dark). One month after the treatment, the treated plants had flower-induction for all of them

but there was no evidence of the expression of the cloning gene despite the expected frequency of 50% that should have manifested the gene. On the other hand, three of the control-plants regenerated plantlets on their tassels. This number is much less than the expected 6, if the cloning gene is a responder to long-day illumination. Furthermore, the number of plantlets on the responder plants ranged from three to five per tassel. Comparing with the previous results reported by the senior author, the gene was only weakly activated. With the objective of clarifying this phenomenon, further studies are planned.

CHISINAU (KISHINEV), MOLDOVA Institute of Genetics, Acad. Sci. Mold. Rep.

The posterior evaluation of maize selection for productivity --Chernov, AA, Mihailov, ME

The objective of the present study was to establish the efficiency of maize selection for productivity by means of posterior evaluation. The study was carried out on a high-yielding hybrid, Moldavsky 291, that is widely cultivated in Moldova. The parental lines, F1, F2 and F3 plants were estimated for the following quantitative traits:

- 1) time from emergence to the flowering of panicles;
- 2) time from emergence to the flowering of top ears;
- 3) time lag of the onset of flowering between panicle and top ear;
- 4) time from flowering to the maturation of top ears;
- 5) time from emergence to the maturation of top ears;
- 6) number of stems;
- 7) plant height;
- 8) stem length;
- 9) panicle length;
- 10) top ear position on the stem;
- 11) diameter of the bottom first internode;
- 12) number of the above-ground nodes;
- 13) number of ears with kernels:
- 14) internode mean length;
- 15) stem volume parameter;
- 16) ratio of stem length to bottom first internode diameter;
- 17) weight of top ear at harvest;
 - 18) weight of the remaining ears at harvest;
 - 19) total weight of ears;
 - 20) the proportion of second top ears in total ear weight;
 - 21) daily increment in ears weight;
 - 22) weight of the cob of top ear;
- 23) number of kernel rows on the top ear;
- 24) number of kernels on the top ear;
- 25) number of kernels in row on the top ear.
- 26) top ear length;
- 27) top ear diameter:
- 28) ratio of top ear length to diameter;
- 29) weight of 1000 kernels;
- 30) grain index.

The efficiency of maize selection for productivity was estimated for the correlation of the quantitative traits studied in F2 with the total weight of ears in F3. The correlation analysis has shown three traits to differ with respect to the efficiency of maize selection for productivity: internode mean length, diameter and weight of top ear at harvest. For the internode mean length in F2 statistically significant correlation with total weight of ears in F3 reached 0.76 (P<0.01), for diameter of top ear: 0.52, for weight of top ear at harvest: 0.49. The correlation between total weight of ears in F2 and F3 reached only 0.22.

The results suggest that the efficiency of maize improvement for productivity may be increased by means of the selection for internode mean length, diameter and weight of top ear at harvest. The results obtained depend on year conditions. Future research is needed to ascertain the nature of the effects observed.

The influence of heterozygosis for marker loci on grain yield in maize

--Mihailov, ME, Chernov, AA

We studied the dependence of productivity in F2 maize plants on heterozygosis for the genome zones marked with 7 mutant and morphological loci. The hybrid combinations Ku123 x 2-9m and UIT-757 x 2-9m were used. The line 2-9m is marked with loci of chromosomes 2 (*ws3*, *lg1*, *gl2*), 6 (*y1*), 9 (*sh1*, *wx1*) and 10 (*R1*).

The F2 plants have been grouped in 8 classes according to number of heterozygous loci. In each class the mean grain yield has been detected. The recessive homozygotes ws3, lg1, gl2, sh1 and wx1 were excepted from analysis to avoid the pleiotropic effects.

The results are given in the table. The evident general positive trend of productivity at increase of heterozygosis is shown. The detail analysis has shown that heterozygotes are excellent for the *sh1* and *wx1* loci compared with analogous homozygotes. For the *ws3*, *lg1* and *gl2* loci the heterozygotes have no regular advantage. For the *y1* and *R1* loci the heterozygous plants are intermediate for productivity, exceeding mean value (mean a/d=0.75 for *y1* and 0.92 for *R1*).

Further analysis is needed to test whether the positive influence of heterozygosis can be reduced to the sum of the partial effects of each locus, or if there is a non-allelic interaction between different heterozygous zones of the genome.

Table. The productivity of F2 plants (gm/plant) at different degrees of heterozygosis.

		Hybrid and year	
Number of	Ku123 x 2-9m	Ku123 x 2-9m	UIT-757 x 2-9m
heterozygous loci	1993	1995	1993
0	95 (1)	163 (1)	169 (1)
1	132±32 (5)	146±15 (7)	124±20 (6)
2	139±14 (13)	153±24 (8)	133±8 (15)
3	147±6 (26)	164±12 (18)	148±14 (13)
4	148±7 (31)	150±14 (16)	130±10 (31)
5	146±7 (38)	164±16 (16)	135±7 (26)
6	139±10 (30)	175±11 (22)	164±10 (20)
7	155±8 (15)	181±63 (3)	167±14 (10)
Total	145±4 (159)	162±6 (91)	142±4 (122)
Occurrents in the base	links the sumbles of she	and the interest	2/2001/06/07/2002/2

Comment: in the brackets the number of plants is given.

The application of treatments of physical and chemical nature in maize radiation mutagenesis

--Ikhim, YG

Radiation mutagenesis as one of the biotechnological directions of radiobiology has encountered a number of problems. The positive correlations between the dose and the radiation effect have been studied by many authors and are well-known. However, the dose increase leads to an enhanced possibility of lethal damages, and the mutation number in the radiated organism shows a loss of changes in genetic plasma. The problem of organism radiation responses, namely regeneration, repopulation and dedifferentiation, also arises at mutagenesis and in the course of studying the repair systems of multicellular plant organisms. Therefore, it is necessary to develop a method, with the aid of which it would be possible to overcome the above problems and keep the maximal possible number of mutagen modifications.

The postradiation (therapeutical) treatment is one of the most appropriate effects for the regulation of all the physiological processes, particularly, repair systems. The exogenic activation of intracellular processes modifies, to a great extent, the radiation damage, increasing the potential of the cell safety system with the help of somatical protection.

Variances	Plant height	Leaf length	Leaf width
	MK	-01	
Control	97.93±1.88	56.77±0.78	5.74±0.06
Radiated control	72.84±2.31	51.27±0.85	5.09±0.09
y + Crossing	79.19±2.16*	52.54±0.77	5.01±0.09
γ + Phytostim	74.77±1.96	51.39±0.81	4.85±0.09
γ+EF	74.11±1.91	50.89±0.82	4.98±0.09
γ+EHF	78.93±1.94*	51.60±068	5.03±0.08
	19-	3-3	
Control	147.63±2.62	63.82±1.17	7.04±0.15
Radiated control	128.40±2.40	57.25±0.81	6.17±0.11
y + Crossing	137.29±2.31**	59.84±1.00*	6.23±0.12
y + Phytostim	118.83±4.52	51.37±1.53	5.66±0.17
γ+EF	127.59±2.97	55.18±1.21	5.90±0.16
γ+EHF	135.40±2.52*	59.42±1.09	6.18±0.12

Table 1. Biometrical characteristics of plants.

The difference with the radiated control is significant: * - 5%, ** - 1%.

The studies carried out show a possibility of overcoming the problems of radiation mutagenesis in higher plants. The biometrical characteristics of the first generation plants express in their physiological condition the treatments studied (Table 1). The postradiation treatment with the synthetic growth regulator "Crossing" and exposure to electromagnetic field of an extremely high frequency (EHF) mitigated the damage effect and enhanced plant habitus in the two stocks under study, MK-01 and 19-3-3, while the radiation doses were within the lethal ones (250Gy). The biometrical indices of the plants exposed to postradiation treatment with the biostimulator "Phytostim" and the electric field (EF) of the current at an industrial frequency did not differ from the radiated control.

The findings of the cytological studies are summarized in Table 2. The number of aberrant cells in the control corresponds to the experimental data of other authors and does not exceed 1%, which proves a genetic stability and developed safety system of the 19-3-3 stock. The aberration number of the chromosome material upon radiation made 20.74%, which indicates serious damage of the genetic plasma. Among all the treatments studied, only one contributed to the activation of repair processes; i.e. the postradiation treatment with "Crossing" - 15.94%. However, the percentage of chromosome damage exceeds significantly the control in this treatment, which leads to the suggestion that a high percentage of morphogenetic modifications caused by the chromosome aberrations can be expected. The studies on the elimination of the damaging action of the postradiation treatment for the trait of the number of sterile pollen grains are given in Table 3. The samples of pollen grains were collected on four dates.

The exogenic factors applied after radiation induce the catalysis of repair reactions causing mistakes in the repair system action. The change in the physiological condition of the damaged plant organism must not lead to the elimination of the apical dominance, otherwise it will result in regeneration recovery or dedifferentiation of tissues. But in both cases, these lead to elimination

Table 2. The cytological studies on the action of postradiation treatments. (Ikhim Yu.G., Scorpan V.G., Lysikov V.N., MNL 73, 1999.)

Variances	All of cells	Aberratio	berration Bridges		Fragments		
		number	%	Chromatid %	Chromosome %	Single %	Double %
Control	1414	11	0.78	0.28	0.28	0.07	0.15
Radiated control	1512	314	20.77	6.42	6.94	4.70	2.71
$\gamma + \alpha$ -tocopherol	1042	291	27.93	8.06	9.79	5.47	4.61
γ + Crossing	1311	209	15.94	4.73	4.73	2.14	4.34
γ + Phytostim	718	142	19.77	2.92	8.91	1.81	6.13
y + Catolitic	1152	363	31.51	6.68	12.15	5.47	7.21
γ + Anolitic	1521	526	34.58	13.48	7.30	6.77	7.03
γ + t =80 C, 30 min	933	280	30.01	7.72	8.36	6.11	7.82

Table 3. Sterility of pollen grains.

Variances	I date, %	II date, %	III date, %	IV date, %
Control	4.6	4.4	7.4	10.1
Radiated control	17.6	21.3	20.0	23,9
y + Crossing	12.8	14.7	19.9	22.8
y + Phytostim	15.4	18.3	21.8	27.6
y+EF	16.0	19.1	27.2	26.0
γ+EHF	17,7	21.5	18.8	21.7

of mutant population of the apex initials. The observation over M2 showed that this combined effect increased not only the number of specimens in the offspring, but the range and percentage of mutant forms.

Segregation for the marker ra1 gene in matroclinal haploids of maize

--Rotarenco,VA

The genetic inducers available at present allow the production of matroclinal haploids in mass quantities practically from any maize genotype (Tyrnov and Zavalishina, 1984; Zabirova, 1996; Chalyk, 1999). The absence of a directed elimination of individual genotypes and selection of ovules during the genetic induction of haploids is an important condition of their utilization in breeding and genetic programs.

P. Lashermes et al.(1988) studied the segregation of doubled haploids by isozyme markers and compared the segregation of doubled haploid lines and self-pollinated ones by phenotypical traits. The finding showed that the population of haploid plants represented a randomized set of genotypes. Lashermes showed that the directed elimination of individual genotypes was absent in the experiment. The ovule selectivity was also absent at the induction of haploids.

The goal of our work was to study the segregation for the marker *ra1* gene (conical panicle and branching ear) in haploid plants in order to establish the conformity of its segregation with the theoretically expected one under our conditions and in our material.

The inbred Rf-7 line crossed with the MG line carrying a homozygote for the *ra1* gene was used as initial material. The hybrid produced was crossed with the MHI line, which was an inducer of matroclinal haploids. The MHI line contains the marker *A1, C1, Rnj* gene, the presence of which allows the haploids to be selected reliably enough at both seed and plant level under field condition. Segregation for the marker gene was studied on the haploid population produced. The table shows the assessment of segregation among haploid plants and the theoretically expected one.

Table. The conformity between the segregation for the marker gene in haploid plants and the theoretically expected one 1:1(χ fact)

Haploid	Total number	Normal	Mutant	χ-square
population	of haploids	genotype	genotype	
Rf-7 x MG	70	38	32	0.5

The theoretical value of the $\chi\mbox{-square}$ is 3.84 at the 5% significant level.

Since the haploids originated from the F1 hybrid, heterozygous for the gene under study, the theoretical expected segregation must be 1:1. Our experiment has confirmed that the segregation for the *ra1* gene is in conformity with the theoretically expected one.

The findings of our experiment have led us to the conclusion that in this case the haploids represent a randomly segregating population. The linear elimination of individual genotypes and ovule selectivity were absent during the haploid induction. Haploid plants can be used for the genetic analysis of traits and selection of genotypes with valuable economic traits.

Synchronization of cell cycles as a means of enhancing the efficiency of chromosome doubling in maize

--Rotarenco,VA

Maize haploidy has been more frequently involved in the solution of a wide range of scientific objectives. However, male sterility of maize haploids has remained an urgent issue until present.

Colchicine is known to be an unsurpassed chemical agent used for the polyploidization of plants. Simultaneously, it has a strong mutagenetic property. Possibly this is the cause of its insufficient efficiency during doubling of maize haploids. The haploid chromosome set is known to be more sensitive to mutagenic effect in comparison with the diploid one (Tyrnov, 1970). The other possible reason is an asynchronous division of meristem cells, which causes their varying sensitivity to the polyploidizing action of colchicine. Prophase, metaphase, and anaphase cells duplicate, but the mutagenic action of colchicine results in a significant number of chromosome aberrations, blocking of cell division, death of a part of them. Simultaneously, interphase cells are less sensitive to colchicine and, therefore, they maintain the former level of ploidy and the ability of a normal division (Davoyan, 1972).

It is known that chemical mutagens are characterized by the

capacity to influence directly not only the DNA molecule, but also its precursors. This specific type of mutagenesis is characteristic of the presynthetic (G1) and synthetic (S) phases of the cell cycle, when modified bases or nucleotides may be inserted into the forming DNA molecule (Dubinin, 1968).

In order to overcome the barriers impeding effective chromosome duplication in haploids, we propose the utilization of a method contributing to the increase in the cell number at the phase of mitotic division during the treatment with colchicine.

Seedlings with a root length of about 1.5cm were used for colchicine treatment, as mitosis in the stem meristem proceeds just at this stage of maize development (Gulyaev, 1958; Berlyn, 1972). It has been established that the rootlets reach an appropriate length after 3-day germination of seeds at 26 C. Then the seedlings were placed in a refrigerating chamber and kept at the low temperature (2-4 C) for 72 hours. Further, the seedlings were placed into a thermostat at the same temperature (26 C) and the meristem tissue was examined using a cytological method with equal time intervals. It had been established that all the cells were proceeding with the interphase stage after they were kept in the refrigerating chamber. This condition was maintained for a few hours and the mitotic activity of cells appeared only after seven hours of their storage at the temperature of 26 C. In this case, the mitotic activity was ample in comparison with the meristem tissue of the seedlings which were not exposed to low temperatures.

The effect of mass mitotic activity was studied on three genotypes showing no significant difference among them. The findings of the cytological examination had led us to the conclusion that it was the synchronization of cell cycles we were observing in maize at low temperatures.

The synchronization was employed as a possible means of enhancing the efficiency of haploid diploidization, as well as a possiblity to reduce the mutagenic action of colchicine.

Colchicine treatment was conducted seven hours after the seedlings had been placed into the thermostat. The seedlings were soaked in colchicine solutions at the concentration of 0.02%, 0.04%, and 0.06% supplemented with DMSO(0.5%). The treatment was carried out at the temperature of 18 C and 26 C for 12 hours. The colchicine treated seedlings were planted into sand filled tubs and kept in dark for 24 hours at the temperature of 26 C Further, the seedlings continued to grow for 48 hours at sun light then were planted in the field.

The experimental findings on the duplication of the chromosome number were verified under field conditions. The number of haploid plants producing pollen was estimated.

The effect of the cell cycle synchronization was more apparent in the treatments with the colchicine concentration of 0.02% while

Table.	The method	of treatment	and results	obtained

Treatme	nt conditions		Resu			
Temperature	Concentration	Number of plant	Haploids	Flowering haploids	%	
2		404	404	0	0	
18 C	0.02%	34	32	2	5.8%	
	0.04%	35	25	10	28.5%	
	0.06%	45	36	9	21%	
Total		114	93	21	18.4%	
26 C	0.02%	55	48	7	12.7%	
	0.04%	57	38	19	33.3%	
	0.06%	31	25	6	19.3%	
Total		143	111	32	22.3%	

flowering plants were absent in the treatment under similar conditions and concentration but without synchronization.

The percentage of flowering haploids in the treatments with the conlchicine concentration of 0.06% was close to that without synchronization. The null influence of different temperatures and synchronization on the duplication result with an increased colchicine dose is likely to be associated with the fact that its diploidizing action, to a larger extent, occurs after soaking, i.e. colchicine, as an alkalyzing chemical mutagen, is characterized by the capacity to remain in tissue for some time. The colchicine action in these cases is likely to take place during at least two cell cycles. This supposition is also linked to the fact that plants supposedly having tetraploid traits were found among the haploids.

The seedlings treated with the concentration of 0.06% colchicine showed a suppressed growth and strong thickening at initial stages.

The highest percentage of flowering haploids was obtained after the treatment with the 0.04% concentration plus synchronization 28.5% at the treatment temperature of 18 C, and 33.3% at 26 C.

A significant difference in the percentage of flowering plants was recorded between the treatments at different temperatures, especially at the concentrations of 0.02% and 0.04%. This is, probably, connected with the highest efficiency of colchicine at high temperatures.

Flowering panicles were not found in the untreated control comprising 404 haploid plants.

Thus, synchronization of cell cycles in combination with low colchicine concentrations and elevated temperature can significantly increase the efficiency of diploidization of maize haploids.

The comparative characteristic of the correlation between the traits of maize diploids and haploids

--Rotarenco,VA

Plant transition from the diploid to haploid level involves quite notable phenotypical modifications. Haploids, as a rule, are similar to the specimens of the initial species for major traits, but in most cases their difference from diploids is of quantitative nature. It is believed that haploids are a reduced copy of parental form, at the same time, the transition to the haploid level involves significant modifications of genotypical medium, gene dose, expression of recessive gene. These peculiar features of haploids cause a definite specificity in gene interaction, as well as in genotype one, or more precisely, that of the genome and the environment. Some researchers (Hollingshead, 1930; Muntzing, 1934; Katayama, 1954) have found among the haploids traits absent in the initial diploids in a number of crops. The correlation between different traits is likely to vary in haploids and diploids, too.

The trait conjunction is a complex property from the genetic and physiologic viewpoints. Much attention is paid to the interrelation of the expression of different traits in both breeding work and genetic studies. Every possible correlation of traits is at the same time a property which hampers the breeding process, as well as an obstacle to developing an expected ideotype.

The goal of our work was to compare the interrelation of some qualitative traits, as well as the comparison of the relations between the indices including plant and earcorn traits at the diploid and haploid level.

The heterogeneous SP population and haploids derived from it were used as initial material for our studies. The plant traits were

measured in diploid and haploid population after the termination of growth. The earcorn traits were measured after their maturation under laboratory conditions. These were followed by the calculation of correlation coefficients and the criteria of their significance.

The correlation coefficients presented in Table 1 show that the pairs of the plant traits have a mean correlation between each other. The comparison of two levels of ploidy with the respect to these traits and their relation shows that the correlation coefficients differ insignificantly. A significant difference between the diploid and haploid levels was recorded for earcorn length and diameter. The correlation coefficient for the earcorn traits was 0.63 in the diploid population and 0.21 in the haploid one.

The earcorn traits are very important for maize haploids as their yielding potential can be predicted from them. This is associated with the dominance of the abnormal meiosis in the haploid chromosome set and the formation of a low number of seeds.

Table 1. The coefficients of correlation between certain plant and ear traits in diploids and haploids.

	Ploidy			
Correlating Traits	2n	n		
Plant Height and Height of Attachment of the First Ear	0.53**	0.59**		
Leaf Length and Width	0.4**	0.43**		
Ear Length and Diameter	0.63**	0.21		

"." The coefficients of correlation are significant at P>0.05 and 0.01 respectively.

Table 2 shows the correlation coefficients between the traits of the earcorn and plant at the diploid and haploid level. The data show a mean correlation of these traits in the diploid plants and actually the absence of the correlation in the haploids.

Table 2. The coefficients of correlation between the ear and plant traits in diploids and haploids.

Traits	Plant He	ight	Height u 1 ear	ip to the	Leaf Ler	igth	Leaf Width		
	21	n	21	n	2n	n	2n	n	
Ear Length	0.47**	0.17	0,35*	0.13*	0.57**	0.007	0.6**	0.07	
Ear Diameter	0.28	0.19	0.020	0.09	0.36*	021	0,4*	0.07	

In order to provide a general characterization of the correlation between the habitus and earcorn, we calculated the correlation between the indices, combining four traits of the plant and two traits of the earcorn. The indices were calculated in the following way: the value of the trait of an individual plant was divided by the mean value of this trait for all the samples and the data obtained were summed up with those obtained by the same way but for other traits. As a result, each plant in the sampling was characterized by only two figures. One figure characterized the plant traits, the other - the earcorn traits.

We calculated the correlation between the plant index and the earcorn one in the diploid and haploid. The correlation coefficient was 0.53 (significant at P>0.01) at the diploid level, and 0.073 - at the haploid one.

This study has shown that the correlation between the earcorn traits and the plant ones differs significantly at the diploid and haploid levels. This difference is true for both individual pairs of the traits and the indices of plant and earcorn traits. The difference was also significant for the earcorn traits in the diploid and haploid plants. The data suggest that the transition to the haploid level leads to a significant change in the correlation between the maize traits. This fact may have a great importance for breeding work. During the selection at the haploid level, the genetically determined expression of the trait can be selected with a high precision in comparison with the selection at the diploid level. Thus, it is possible to reduce the time of selection work and to increase its efficiency.

Morphological characters variability of male gametophyte of waxy maize regenerants

--Kravchenko, OA, Palii, AF, Kravchenko, AN, Lysikov, VN

In our investigation the 346 and 502 inbred lines and their waxy counterparts, as well as their R1, MR1, MR2 progeny, were taken as the experimental material. For the analysis in the light scanning microscope "Morphoquant" permanent preparations of mature pollen were made using the technique developed by Kravchenko A.N. (In: Recombinogenesis in Evolution and Breeding, Kishinev, p.264-265). Such characters as perimeter (μ m), area (μ m²), form factor (relative units), width (μ m), diameter (μ m), eccentricity (relative units) of pollen grain, as well as those of vegetative and generative cell nuclei were evaluated. The data were processed by two factor analysis of variance.

The results obtained indicate that morphological characters of pollen grain of the 346 and 502 inbred lines and their counterparts varied insignificantly (coefficient of variation (V)<10%). However, the variability range of such pollen grain characters as perimeter, area, and eccentricity in R1, MR1, and MR2 generations was significant (V>20%). In addition, the higher coefficients of variation were noted for waxy counterparts.

Analysis of variance revealed that variability of pollen grain characters studied was either genotype or gamma radiation dependent (Table 1).

Table 1. Share of variability of pollen grain characters, %,

CHARACTERS	DETERMINED BY:							
	genotype	gamma radiation	their interaction					
perimeter	65.7***	11.36***	14.11***					
area	53.46***	30.65***						
form factor	9.78"	17.39***	55.18***					
diameter	66.73***							
width	39.32***	49.27***	4.63*					
eccentricity	15.78***	63.83***	11.24***					

*** - P<0.001; * - P<0.05

However, the variability of width and eccentricity was to a large degree gamma radiation dependent. It is worth noting that variability of such a character as form factor proved to be mostly determined by the interaction of factors studied. For waxy counterparts the average values of such characters of pollen grain as perimeter, area, and eccentricity were found to be higher (Table 2).

In generations of regenerants derived from inbred lines studied the average values of perimeter, form factor, and eccentricity proved to be decreasing in comparison with control (Table 3).

Table 2. The average values of morphological characters of pollen grain.

			Cha	racters		
Genotype	perimeter	area	form factor	diameter	width	eccentricity
346+/+	299,16	5178.18	16.11	86,46	72.92	1,173
346wx1wx1	307,69	4935.07	17,98	83.33	71.42	1.360
502+/+	281.37	4447.43	17.93	80.51	67.92	1.206
502wx1wx1	289.99	4685.95	19.95	83,46	67.85	1.340
Least significant difference (LSD 0.001)	7.04	237.28	1.63	2.73	1.93	0.16

15

Table 3. Pollen grain morphological characters variability in generations of regenerants.

			Characters	11	
Generation	perimeter	area	form factor	width	eccentricity
Control	304.25	4816.16	18.37	68.62	1.22
R1	296.89	4340.32	17.96	66.79	1,2
MR1	289.66	4546.81	17.55	67.96	1.21
MR2	282.99	5166.75	17.12	73.51	1.15
LSD 0.001	6.1	205.49	0.41	1.67	0.11

It was also found that morphological character variability of vegetative and generative cell nuclei in MR1 and MR2 generations was higher (14%<V<47%) in comparison with control and R1 generation. Analysis of variance showed the reliable dependence of variability of these characters on genotype, gamma radiation and their interaction. It should also be noted that the variability of characters studied (except eccentricity of generative cell nuclei) was more gamma radiation dependent (Table 4).

Table 4. Morphological character variability of vegetative (V) and generative (G) cell nuclei of pollen.

	the share of va	riability determined by:	
Characters	genotype	gamma radiation	their interaction
Perimeter V	39.79***	43.32***	11.98***
Area V	40.91***	42.19***	11.75***
Form factor V	35.99***	51.68***	4.89*
Diameter V	35.77***	53.26***	5.79**
Width V	29.39***	35.17***	
Eccentricity V	-		56,71***
Perimeter G	30.01***	61.52***	5.21***
Area G	26.68***	49.35***	10.58**
Form factor G	9.44***	77.68***	5.46*
Diameter G	7.51**	80.69***	•
Width G	6.4***	81.93***	7.06***
Eccentricity G	37.28***	35.36***	+

p<0.05; "p<0.01; ""p<0.001

The average values of such characters as perimeter, width of vegetative cell nucleus and all morphological characters of generative cell nucleus were found to be decreasing for regenerants of waxy counterparts (Table 5).

Table 5. The average values of morphological characters of vegetative (V) and generative (G) cell nuclei in dependence of genotype.

		Genotype						
Characters	346+/+	346wx1wx1	502+/+	502wx1wx1	LSD 0.001			
Perimeter V	43.62	40.33	39.29	37.06	1.74			
Area V	92.00	78.24	78.81	69.73	5.92			
Form factor V	21.88	19.69	16.18	17,93	1.73			
Diameter V	12.25	10.78	8.1	9.62	1.42			
Width V	8.71	7.42	8.0	7.4	1.2			
Perimeter G	22.00	20.31	22,31	17.58	1.29			
Area G	17.24	15.76	18.12	12.39	3.24			
Form factor G	26.68	23.31	22.03	18.48	3.18			
Diameter G	7.63	5.98	6.27	4.69	1.54			
Width G	1.34	1.01	1.73	1.41	0.3			
Eccentricity G	3.76	3.2	386	2.93	0.54			

In MR1 and MR2 generations the average values of characters studied proved to be increasing in comparison with control and R1 generation. In addition the plants of MR2 generation had the highest average values of male gametophyte characters studied (Table 6).

In general, according to the results obtained the pollen of regenerants and their progeny (especially those derived from irradiated embryos) was found to differ from the male gametophyte of inbred lines by the range of morphological characters studied. Table 6. Morphological character variability of vegetative (V) and generative (G) cell nuclei of pollen among plants of different generations.

	1		Generati	on	
Character	Control	Ri	MR ₁	MR ₂	LSD 0.001
Perimeter V	36.96	38.51	40.27	42.99	1.5
Area V	69,02	75.37	81.5	88.58	5.13
Form factor V	15.85	17.39	18.96	21.15	1.5
Diameter V	7.15	8.52	9.79	12,48	1.23
Width V	7.24	7.99	9.06	10.65	1.04
Perimeter G	18.35	19,5	20.97	24.33	1.12
Area G	13.66	14.92	15.89	20.07	2.8
Form factor G	19.49	20.89	22.34	31.02	2.76
Diameter G	3.71	5.09	6.7	8.95	1.33
Width G	0.43	1.88	3.26	4.47	1.15
Eccentricity G	3.25	3.49	3.72	3.99	0.17

Studies on the induced variability of maize plants following the radiation of the female gametophyte

--Romanova, IM, Krivov, NV, Lysikov, VN

Radiation mutagenesis one of the promising breeding techniques. Mutations can result from the radiation of maize seed or pollen with different types of radiation. Radiation of female generative structures will make it possible to solve a number of theoretical and practical problems, including the increase of genotypical diversity, the development of the initial genetic stock or donors with improved characteristics. The availability of X-ray units of the Reis type allowed the radiation of plants under field conditions. The power of the exposure dose was 2000 r/min. In our experiments, the radiation was carried out at a distance of the focus objective of 20 mm.

The female gametophyte of maize plants was exposed to the radiation dose ranging between 5 and 70 Gr in 15 treatments. The experimental material produced was sown in the field and the quantitative and qualitative traits of maize plants were studied during the vegetative period in M1. In practical breeding, an appropriate selection of doses, as well as the effect on germinating and producing capacity of plants, are of paramount importance for induced mutagenesis.

Our experiments have shown that the dose curve of the grain content of maize plants exposed to the x-ray radiation of 5-70 Gray at the 3-4 leaf stage has a typically expressed exponential pattern, i.e. the grain content of the maize ear falls with the dose increase by 8-12 times.

The experiments were carried out to analyze the grain content in M2, germinating capacity of the plants in M1.

It has been established that the dose curve of the grain content in M2 changes significantly, acquiring a distinctly expressed peak pattern (Table 1). The one factor dispersion analysis has shown that the grain content per ear in M2 reaches maximum values at the radiation dose of 20 Gray and makes 148.4 ±12.6 and 40 Gray - 135.9 ±10.5 . This increase is statistically significant (P<0.5) and differs from the control values of the grain content making 101.6 ± 9.6. The tendency towards the appearance of peaks on the dose curve is observed in other ranges of x-ray radiation, in particular at the doses of 10 Gray, however, such deviation of the control values is statistically insignificant at the significant level of 95%.

It is noticeable that the dose curve of the M1 germinating capacity is characterised by a trend towards the formation of extrema in the same ranges of the x-ray radiation (Table 1). Thus, one factor dispersion analysis has shown that at the dose of 20 Gray the germinating capacity of plants reaches 62.1 ± 7.3 at 40 Table 2. Studies following the exposure of the female gametophyte to x-ray radiation,

Treatm ent	F	lants		F	amilie	es	Dwa semi	rfs and dwarfs	Indented lea	Indented and rolled Male and female leaves sterility Stripeness Late r		Stripeness		ripening		
Doses (Gr)	study	No	%	study	No	%	num. of plants (%)	num. of families (%)	num. of plants (%)	num. of families (%)	num. of plants (%)	num. of families (%)	num, of plants (%)	num. of families (%)	num, of plants (%)	num. of families (%)
Control	84			10												
5	169			16												
10	264	15	5.7	23	6	26.1	7(2.7)	3 (13)	5(1.9)	2(8.7)			3(1.1)	1(4.4)		
15	73	2	2.7	13	2	15.4			1(1.4)	1(7.7)			1(1.4)	1(7.7)		
20	170	5	2.9	14	2	14.3			4(2.4)	1(7.1)	1(0.6)	1(7.1)				
25	220	7	3.2	19	2	10.5			7(3.2)	2(11)			1(0.5)	1(5.3)		
30	271	6	2.2	25	3	12			1(0.4)	1(4)	1(0.4)	1(4)	1(0.4)	1(4)	4(1.5)	1(4)
40	117	2	1.7	10	2	20	1(0.9)	1 (10)	1(0.9)	1(10)						
50	177	4	2.3	22	1	4.6								4(2.3)	1(4.6)	
60	190	21	11.1	17	5	29.4	3(1.6)	2 (11.8)					2(1.1)	1(5.9)	6(2.3)	1(5.9)
				-			10(5.3)	1 (5.9)								
70	253	23	9.1	20	2	10					1(0.6)	1(7.1)				

Table 1. The grain content and germinating capacity after treating female gametophyte with x-ray radiation

Treatment	Grain content	Coefficient	Germinating	Coefficient
Doses (Gr)	per ear	variation (%)	capacity	variation (%)
control	101.6 + 9.6	55.6	56.9 + 2.6	14.6
5	97.7 + 11.0	66.7	52.1 + 5.5	41.8
10	129.0+ 8.0	52.7	46.4 + 3.3	34.2
15	84.8 + 9.0	53.1	37.5 + 9,9	95.2
20	148.4 + 12.6	45.0	62.1 + 7.3	43.8
25	131.4 + 12.4	49.1	53.9 + 3.9	36.2
30	115.2 + 8.7	62.9	44.5 + 4.6	51.2
40	135.9 + 10.5	36.3	47.7 + 6.4	42.4
50	105.8 + 12.1	69.8	29.7 + 4,7	73.5
60	99.7 + 11.5	58.9	34.2 + 3.6	43.6
70	80.9 + 10.2	74.7	25.0+ 4.0	69.6

Gray it is 47.7 \pm 6.4, while in the control it makes 56.9 \pm 2.6. However, it should be mentioned that these data at the significant level of 95% differ from the control ones statiscally insignificantly, though such significance at the dose of 20 Gray is already revealed at the significant level of 95%.

The frequency and mutation type arising due to the action of the x-ray radiation on the female gametophyte have been evaluated (Table 2). The highest number of mutations has been found at the radiation doses of 10 Gray (5.7%) and 60 Gray (11.1%), respectively both in the plants and families. At the radiation doses of 20 and 40 Gray, upon which the peaks of germinating capacity in M1 and grain content in M2 are observed, the number of mutations appears to be significantly lower in plants and families and makes 2.9% and 1.7% respectively. The processes of repair are more intensive under these doses.

The experimental data have led us to the conclusion that the exposure of the female gametophyte to the x-ray radiation within the range of 20 - 40 Gray might significantly intensify repair processes in the maize plant resulting in the increase of seed germinating capacity and grain content of ears. The application of target radiation doses might lead to a maximum number of mutations, which is observed at the doses of 10 and 60 Gray, as well as to a desired type of mutation using experimentally established exact doses of x-ray radiation. All these make it possible to significantly reduce the duration needed to obtain desired results, as well as to carry out a target breeding of plants with a maximal possible efficacy.

Obtaining fertile pollen in maize maternal haploids

--Chalyk, ST (Cealic, ST)

Development of homozygous lines in maize can be significantly accelerated by using maternal haploid plants. However, their rather high male sterility is the limiting factor for selfing of maternal haploids. We have made an attempt to solve the problem by using colchicine. Maternal haploids obtained from MK01y x A619 hybrid were used in the experiment. Haploids were treated by water solution of colchicine with DMSO (dimethyl sulfoxide) 0.5% (by volume). The following three stages of seedlings and germinated seeds were subjected to the treatment: (1) soaked seeds; (2) 2-3 day seedlings and (3) seedlings with 3-4 leaves.

(1) Soaked seeds were treated according to the method of Gayen et al (1994). The seeds were soaked in water 48 hours at 18 C. A small portion of the plumule tip was cut off before treatment. Treatment with 0.06% colchicine concentration was carried out at 18 C. After treatment the seeds were washed in running water, and then kept in the dark at 18 C for two days. Then they were planted in the field nursery.

(2) 2-3 day seedlings were treated with colchicine according to the method proposed by Deimling et al. (1997). The seeds were germinated in a thermostat at 26 C up to the stage when their coleoptile had grown to the length of about 1 cm. The top of the coleoptile was cut, and long roots were shortened to 2-3 cm. The seedlings were placed in a vessel with colchicine. The treatment was carried out in the dark with 0.06% colchicine at 18 C during 12 hours. After treatment the seedlings were washed with running water and kept in the dark for two days. Several modifications of this method were tried. First, the effect of 0.02% colchicine concentration was examined. Second, the two temperatures of post treatment, 18 C and 26 C were tried. The seedlings were kept in the dark for two days at these two temperatures after treatment. Then the seedlings were planted in the field.

(3) Seedlings were treated according to the method of Zabirova et al. (1996) at the stage of 3-4 leaves. The 0.125% colchicine solution was injected approximately 3-5 mm above the apex. After the injection the seedlings were kept in the dark for two days at 18 C and then planted in the field.

During the experiment the effect of colchicine was considered to be successful in each case if several anthers with fertile pollen appeared on a tassel of a haploid plant. Fertility of pollen was evaluated visually. The Table presents the results obtained. The methods developed by Deimling et al. (1997) and Zabirova et al. (1996) were rather efficient under our conditions. Using the method of Deimling et al. (1997) allowed us to obtain 28.8% and 31.8% of haploids with fertile pollen. Our attempt to modernize the method gave no positive results. Reducing the colchicine concentration from 0.06% to 0.02% resulted in the fact that not a single haploid treated had anthers.

It was difficult to judge on degree of importance of temperature on treatment of the seedlings with colchicine. Unfortunately after planting the seedlings in the field they were attacked by rooks and the number of haploid plants under study was decreased significantly. The small number of plants in the variant with the temperature of the post-treatment of 26 C did not allow determining its difference from the treatment at the temperature of 18 C. Haploids with fertile pollen were obtained with approximately similar frequency in both cases.

Use of injection of colchicine according to the method of Zabirova et al. (1996) resulted in 27.5% haploid plants with fertile pollen. This frequency was quite comparable with the frequency resulting from using the method of Deimling et al. (1997).

In the control, 211 haploid plants were used. Not a single one of these plants had anthers with fertile pollen. We assume that it was the result of rather unfavorable environmental conditions which prevailed in summer 1999 in our region. Strong drought was combined with prolonged high air temperature in the period before tasseling, during tasseling and during flowering. Usually, when environmental conditions are optimal, we obtain, without using any doubling factors, 2-5% haploid plants which have a certain quantity of anthers with fertile pollen. Strong drought and hot conditions led to the fact that in the control all the haploid plants were sterile.

Thus it can be noted that the methods developed by Deimling et al. (1997) and Zabirova et al. (1996) allowed us to obtain fertile pollen in haploid plants even in unfavorable drought and hot conditions. These methods can be successfully used for obtaining doubled haploid lines in a mass quantity.

CLARIFYING NOTE. In the previous article, Chalyk S.T. 1999. Creating new haploid-inducing lines of maize, MNL 73, p. 53-54, it was shown that in our experiments the highest proportion of haploids occurred at the top of an ear. The lowest frequency of haploids was obtained at the bottom of an ear. During the analysis of these data the author referred to the fact that in the article of S. Chase (1969) a similar conclusion was made. However this was a mistake. In his article S. Chase made a directly contrary conclusion. In this connection the author apologizes to Dr. S. Chase and readers for the mistake made.

Material	Conc. of colchicine, %	Temperature, C		Total haploids	Haploids with fertile pollen	
		Before treatment	After treatment		Number	%
Control	-	14	- 14	211	0	0
Seeds soaked for 48 hours	0.06	18	18	21	0	0
2-3 day seedlings	0.02	26	18	27	0	0
2-3 day seedlings	0.02	26	26	19	0	0
2-3 day seedlings	0.06	26	18	52	15	28.8
2-3 day seedlings	0.06	26	26	22	7	31.8
Seedlings with 3- 4 leaves	0,125	26	18	40	11	275

Table. Frequency of haploid plants obtained with fertile pollen.

CLEMSON, SOUTH CAROLINA Clemson University Genomics Institute

Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line LH132

--Tomkins, JP, Frisch, DA, Byrum, JR, Jenkins, MR, Barnett, LJ, Wicker, T, Luo, M, Wing, RA

The construction of a physical framework for the maize genome requires the use of a large insert genomic library. In order to develop a comprehensive physical framework for maize using fingerprinting and BAC end sequencing technologies, a deep coverage BAC library was developed. Methods used were generally similar to those described previously by Tomkins et al. (Plant Molec. Biol. 41:25-32, 1999).

The library was developed from the maize LH132 Dekalb inbred line and is suitable for constructing a comprehensive physical framework of the maize genome. HindIII was used as the cloning enzyme because complete digests with maize DNA produced fragments ≤ 30 kb. The library consists of 427,392 clones stored in 1,113 384-well microtiter plates. A negligible amount of clones (0% based on 347 samples) do not contain inserts as judged by random analysis of BACs sampled from the library. A random sampling of 347 BACs taken from the library indicated an average insert size of 118 kb with a range of 50 to 390 kb. Insert size estimates were based on a very conservative molecular weight marker (Midrange I, NEB). Because the corn genome, like most monocots, has a high percentage of Not1 sites, many insert fragments migrate below 50 kb. It has been our experience that BAC clones from monocot genomes are likely to have inflated insert size estimates when evaluated with a conventional 50 kb lambda ladder. Therefore, we believe that the insert size estimates in the present study are quite conservative. Based on a haploid genome size of 2,500 Mb (Arumuganathan and Earle, Plant Mol. Biol. Rep. 9:208-218, 1991), the coverage of the library is about 20.2 maize genome equivalents.

To determine the size distribution of BAC clones in the library, the 347 BACs analyzed with *Not*l digests were grouped by insert size and the frequency of each group of clones represented in the library was determined. Based on this analysis, 76% of the clones in the library have an average insert size equal to or greater than 100 kb.

The maize LH132 BAC library is well suited to construct a comprehensive physical framework of the maize genome due to its high redundancy and large average insert size. The physical framework for LH132 will be constructed by *Hin*dIII fingerprinting and BAC end sequencing all clones in the BAC library. Reagent costs for these efforts will be maximized due to a negligible amount of BACs not containing inserts.

Construction of the LH132 maize BAC library was performed at the Clemson University Genomics Institute through funds received from the Monsanto Corp. The library is the property of Monsanto and requests concerning its availability and use should be directed to Joe Byrum (email: joe.r.byrum@nal.monsanto.com).

Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line B73

--Tomkins, JP, Frisch, DA, Jenkins, MR, Barnett, LJ, Luo, M, Wing, RA

The construction of a physical framework for the maize genome

requires the use of a large insert genomic library. In order to develop a comprehensive physical framework for maize using fingerprinting technology, a deep coverage BAC library was developed. Methods used were generally similar to those described previously by Tomkins et al. (Plant Molec. Biol. 41:25-32, 1999).

The library was developed from the inbred maize line B73 which is suitable for constructing a comprehensive physical framework of the maize genome. The library is also well suited for map-based cloning and other genomics applications. HindIII was used as the cloning enzyme because complete digests with maize DNA produced fragments ≤ 30 kb. The library consists of 247,680 clones stored in 645 384-well microtiter plates. A neglible amount of clones (0.4 % based on 3/697 samples) do not contain inserts as judged by random analysis of BACs sampled from the library. A random sampling of 697 BACs taken from the library indicated an average insert size of 136 kb with a range of 42 to 379 kb. Insert size estimates were based on a very conservative molecular weight marker (Midrange I, NEB). Because the corn genome, like most moncots, has a high percentage of Notl sites, many insert fragments often migrate below 50 kb. It has been our experience that BAC clones from monocot genomes are likely to have inflated insert size estimates when evaluated with a conventional 50 kb lambda ladder. Therefore, we believe that the insert size estimates in the present study are guite conservative. Based on a haploid genome size of 2,500 Mb (Arumaganthan and Earl, Plant Mol. Biol. Rep. 9:208-218, 1991), the coverage of the library is about 13.5 maize genome equivalents.

To determine the size distribution of BAC clones in the library, the 697 BACs analyzed with *Notl* digests were grouped by insert size and the frequency of each group of clones represented in the library was determined. Based on these data, 88% of the clones in the library have an average insert size equal to or greater than 100 kb.

The maize B73 BAC library is well suited to construct a comprehensive physical framework of the maize genome due to its high redundancy and large average insert size. The physical framework for B73 will be constructed by *Hind*III fingerprinting. Reagent costs for these efforts will be maximized due to the very low percentage of BACs not containing inserts.

Construction of the maize B73 BAC library was performed at the Clemson University Genomics Institute for the Missouri Maize Project (Ed Coe et al.) through a subcontract as part of a grant received from the National Science Foundation Plant Genome program. Requests concerning availability and use of the library should be directed to David Frisch (email: dfrisch@clemson.edu).

COLUMBIA, MISSOURI University of Missouri - Columbia

A safe procedure for EMS treatment of pollen in maize --Kato, A

EMS (ethyl methanesulfonate, methanesulfonic acid ethyl ester) treatment on maize pollen in paraffin oil is known to be very effective to induce mutants. The treatment was originally developed by Neuffer and Coe (Maydica 1978. 23:21-28), and several researchers followed the procedure with successful results (Harper et al. 1995. MNL 69:22; Zhao et al. 1998. MNL 72:15-16). Detailed descriptions by Neuffer of the treatment are found in *Mutants of Maize* (pp. 397-398) and in *The Maize Handbook* (pp.212-218.).

Extreme precaution is necessary to handle EMS because the chemical is a volatile carcinogen. Because EMS treatment of pollen is done in an open field, specific safety procedures must be employed to conduct the treatment in a way that protects the experimenter as well as personnel working in the field. Nevertheless, there are no descriptions of safety procedures for this treatment. In the summer of 1999, I had to develop safety procedures for this treatment. The following is a detailed description of the safety procedure for EMS treatment of maize pollen in the field.

Before starting the experiment the following items should be in hand.

A gas mask (Willson chin-style gas mask, and a canister for organic vapors)

Coveralls (Tyvek/Saranex 23-P Coveralls with hood and booties) Gloves (disposable rubber gloves, size M and L)

Gloves (long gloves that cover the sleeves)

Disposable soft plastic pipets (e.g., Graduated pipets 5ml Fisher Cat. No. 13-711-9A)

Plastic tubes (45 ml disposable plastic tubes with a screw cap) A pipetter (e.g. Pipetman 20, Rainin)

Spray bottles

Polyethylene bags with zipper

Sodium thiosulfate (500g)

Tween 20

The mask fit well and was easy to wear and take off. The canister of the gas mask was extended with a rolled towel, and the tip of the towel was sprayed with thiosulfate solution (10%). The coveralls were disposable, and are thin, lightweight and convenient for body movement.

Before doing the following procedures with EMS, it is better to practice without EMS.

Preparation of EMS - oil mixture. In a fume hood deliver 20 ml of paraffin oil (Sigma, mineral oil M8410) to 20 tubes. Pre-mark the 12 microliter volume level on three or four dry 20 microliter tips. This is easily done by pipetting 12 microliters of water with one tip and marking the water level line on the other tips. The wet tip is disposed of. The marked dry tips are attached to a disposable soft plastic pipet. Wearing the gas mask and double disposable rubber gloves, EMS is moved into the hood from a refrigerator, and EMS delivery starts. The materials should be brought into the hood and placed on disposable paper as follows.

An EMS bottle enclosed in a protective can.

Tipped disposable pipets (three to four).

300 ml 10% sodium thiosulfate solution (addition of 1% Tween 20) in a 500 ml plastic beaker.

10% sodium thiosulfate solution (addition of 1% Tween 20) in a spray bottle.

Twenty plastic tubes (45 ml) containing 20 ml paraffin oil.

A thin metal blade to open the lid of the can and the inner cap of the EMS bottle.

Several sheets of paper towels.

The caps of the plastic tubes are removed. The lid of the can and the cap of the EMS bottle are removed very carefully. Twelve microliters of EMS are delivered to each tube using the tipped disposable pipet. The used pipets are dipped into the sodium

A timer

thiosulfate solution and the inside of the pipet is washed with the solution after delivery. All contaminated materials are dipped into the sodium thiosulfate solution. Sodium thiosulfate reacts with EMS quickly to produce harmless products. Any undesirable EMS contamination is sprayed with the sodium thiosulfate solution and wiped thoroughly with a piece of paper towel. The EMS bottle is capped and sealed in the can and stored in a refrigerator. The EMS containing tubes are capped, numbered and stored in the hood. Materials that have been decontaminated with the sodium thiosulfate solution can be disposed of as regular waste the next day.

Preparation of maize plants for EMS treatment. An inbred with high fertility should be used (e.g., Oh43). The field should be isolated and have warning signs. Husks of the plants are covered with a polyethylene bag (5×15 cm) before silk emergence. A paper bag (5×19 cm, Lawson 217) was inserted between the ear and the stalk. Also a paper tag was attached to every plant (Fig. 1).

Transportation of the tubes containing EMS. One to three EMS tubes are transported to the field every day during the treatment. Tubes are covered with a zipped polyethylene bag containing a piece of paper towel soaked with sodium thiosulfate solution. The covered tubes are stood upright in a Styrofoam box and the box is sealed with sticky tape.

Mixing pollen with paraffin oil containing EMS. Wind direction is determined before mixing. A pole with long tape is helpful. Smoke will also work. Once the wind direction is determined, all

Fig. 1. Preparation of a shoot for EMS pollination. The silks are covered with a bag and another bag is inserted between the sheath and the stalk. A paper tag is attached,

the materials necessary for the treatment are placed upwind from the EMS field.

Each tube contains 20 ml of paraffin oil and 12 microliters of EMS. EMS is observed at the bottom of the tube as a translucent droplet. The tube is shaken five to ten times vigorously and placed in the shade. Maize pollen is collected and filtered to eliminate anthers. Collected pollen is poured into a disposable cylinder and 2 ml of pollen is measured. Wearing gloves and the gas mask, the cap of the tube which contains oil and EMS is opened very carefully. The pollen is poured into the tube and the cap is screwed tightly. This tube is shaken vigorously every 3-5 minutes for 30-50 minutes. During shaking it is not necessary to wear the coveralls and the gas mask.

EMS pollination. Near the end of shaking, preparation for EMS-pollination starts, i.e. taking off shoes, putting on coveralls, triplicate gloves (medium disposable glove, long sleeve glove, and large disposable glove), and the gas mask (be sure your chin is fitted to the mask).

After putting on protective clothes, EMS pollination can begin. The polyethylene bag is removed from the ear and 0.5 - 1.0 ml of the EMS-oil/pollen mixture is dropped onto the silks using the disposable pipet (Fig. 2). The pollinated silks are covered with the shoot bag which is already inserted between stalk and the ear (pin or stapler is not necessary). Continuous agitation is necessary during pollination to prevent maize pollen accumulation at the bottom of the tube. 20 ml of oil containing EMS is enough to pollinate 20 - 40 ears and it takes about 10 - 15 minutes. Silks can be cut with a blade at 2 cm height above the husk just before pollination. For this purpose a knife blade can be attached to the wrist with a string.

After each pollination the paper tag on the stalk is bent according to a pattern that indicates the number of the treatment. Bending is easier and faster than writing letters on the label, and it can be done with one hand. Consequently EMS pollination can be done without any assistance.

Neutralization of EMS After pollination, 10% sodium thiosulfate solution (addition of 10% Tween 20) is added (1:1 ratio) to the remaining oil-EMS mixture and shaken. The gloves and coveralls are sprayed with the sodium thiosulfate solution (addition of 1% Tween 20). The gloves are disposed in a polyethylene bag. Coveralls can be used several times; tears can be fixed with sticky tape. The gas mask is put in a cardboard box and other materials are also put in another box. The boxes are covered with the coverall kept at the field. All garbage is treated with sodium thiosulfate solution (addition of 1% Tween 20) and stored in the field for thirty days. After storage, they can be disposed of as regular waste.

Dealing with high temperature during treatment. The person who conducts pollen-EMS treatment may have to deal with high daytime temperatures. The coveralls and the gas mask prevent evaporation of perspiration, and it makes pollination work very difficult. However, about 15 minutes of work can be done without the risk of heat exhaustion. If the temperature is very high and sunshine is strong, the following tips may be helpful.

1. Eating a lot of broken ice before pollination.

2. Bagged broken ice is placed in the gas mask. The ice can be eaten during pollination.

3. Other work, such as covering ears and detasseling in the EMS field should be done in the cooler times of the day.

Fig. 2. EMS pollination with the protective clothes (photo by D. Auger).

Results of pollen-EMS treatment varies according to the quality of pollen, temperature during mixing, and temperature after pollination (personal communication from Dr. Neuffer). I did the pollen-EMS treatment on the inbred line Oh43 in the summer 1999. The results of the trials I have done varied considerably and

80 % ears resulted in no seed set. The remaining ears with seed set suggested that appropriately treated pollen lost fertilizing ability within 10 minutes after the start of pollination and the viability seems temperature dependent. 30 - 50 minutes of shaking seems appropriate to obtain M_1 kernels. Trials involving different

shaking times and different concentrations of EMS would be necessary to determine the appropriate treatment for a particular inbred line.

Mutant photographs on the World Wide Web (Part 2)

--Neuffer, MG

Note: this is an update on the project described earlier (MNL71:24).

My goal was to make the best pictures from my entire photographic collection available on the MaizeDB web site. To this end, digitized images were produced and appended to the appropriate variation form. However, we did not have time to write captions for the photos (over 3,000 images mostly identified only by symbol, lab number, and name), so they were entered essentially as they appeared in our data files. It was fortunate that we did so at the time because we hit the window of favorable conditions (technology, resources, helpers and convenient access to the internet) that made it easy to do in that superficial fashion. With the able assistance of Lou Butler, and support from the Maize Genome Project I am now in the process of correcting that deficiency. Since an image browser is in the works and will most likely be available in the next few months, I believe these images will prove quite useful to researchers. I am also selecting, as appropriate, images to be attached to the "phenotype" form, so that researchers can see a typical expression of a particular phenotype. For example, see the viviparous phenotype (images are posted at the bottom of the page), at the URL:

http://www.agron.missouri.edu:80/cgi-

bin/sybgw_mdb/mdb3/Phenotype/11091

The complete collection of images is still listed at:

http://www.agron.missouri.edu/NeufferImages.html

The opportunity to go through the collection one at a time is turning out to be an exceptionally pleasant and rewarding experience with each image being a reminder of some aspect of genetic control of maize biology. There are also many clues to unknown information about maize, as well as facts that were observed but unreported, and reminders of work still unfinished. The following reports are examples of unreported data that have been brought to light and will be reported as we proceed with this effort. Other informed workers who use this collection are invited to view it in the same light and to report their observations with the intent of increasing the field of knowledge of biology.

Location of two EMS mutants, fl*-N1253B and sh*-N1328A --Neuffer, MG

The floury, variably collapsed mutant *fl*-N1253B* has been located using TB-4Lf, based on the photo at the URL:

http://www.agron.missouri.edu/db_images/Variation/cd5192-1612-0537/36.jpg

The photo shows two selfed ears from progeny of a cross of $+/fl^*-N1253B \times TB-4Lf$. The top ear is from a hypoploid plant and shows an excess of mutant kernels, indicating that the normal chromosome 4 carried the mutant. The lower ear is from a normal plant and shows 3:1 segregation for the mutant. These confirm that the mutant is located on chromosome 4, probably between the breakpoints of the two B-A translocations.

The opaque sh2-like mutant sh*-N1328A has been located to

chromosome 5L based on the following photo:

http://www.agron.missouri.edu/db_images/Variation/cd5207-1613-0283/56.jpg

The photo shows a double-pollinated ear crossed by selfed pollen (top half) showing segregation for *sh*-N1328A* kernels and by TB-5La showing shrunken mutant hypoploid endosperms, indicating location on chromosome 5L.

A couple of nice mutants

--Neuffer, MG

In the process of providing image captions, as described above, I have uncovered two mutants that would benefit from further exploration. I do not have the facilities to do so myself, but seed is (or will be) available from the Co-op.

The mutant $sh^*-N1544$ is not allelic to sh2 or bt1. It is a shrunken (*sh2*-type) kernel, reduced color with ACR. See a picture of the origin ear at URL:

http://www.agron.missouri.edu/db_images/Variation/cd5207-1613-0283/70.jpg

Note that most mutant kernels are nearly colorless. I have a small amount of this seed available to the first person who requests it, if the mutant is not yet available from the Co-op.

The mutant *nec*-N200B* presents an interesting physiology problem. See the photo at this URL:

http://www.agron.missouri.edu/db_images/Variation/cd5207-1613-2875/11.jpg

This picture shows two *nec*-N200B* mutant seedlings with necrotic crossbands and associated rolled-leaf distortion (probably resulting from lack of turgidity in necrotic tissue).

COLUMBIA, MISSOURI University of Missouri-Columbia USDA-ARS

The development of systematic descriptors and associated vocabulary for Zea mays (maize/corn)

--Vincent, PLD, Coe, EH, Jr.

One of the research areas of the Missouri Maize Project (http://www.cafnr.missouri.edu/mmp/) is the development of systematic descriptors and associated vocabulary for traits and phenotypes for Zea mays. These descriptors and associated vocabulary will be for the mutants and normal phenotypes of maize and should greatly assist the searching for and retrieval of information the Maize database (MaizeDB in http://www.agron.missouri.edu/) by users from all over the world via the world wide web. The curation of the MaizeDB will also be considerably assisted via this set of descriptors and associated vocabulary.

The descriptors and associated vocabulary are based on internationally recognized biological and botanical concepts and terminology and will encompass the breadth of terms generated by maize geneticists, breeders and other researchers working with mutant phenotypes. The descriptors are being developed in an expandable system of 'containment hierarchies' and will accommodate a range of appropriate 'Levels of Observation', from the macromorphological levels through the micromorphological levels and down to the physiological and molecular levels (see diagram).

The access to information in MaizeDB via these descriptors and associated vocabulary should accommodate users from a broad spectrum of knowledge-backgrounds. Access to a glossary, a synonym facility, and images associated with terms in the glossary and synonyms will be provided to facilitate understanding of the descriptors and associated vocabulary.

Some of the development of descriptors and associated vocabulary is being assisted by contacts with colleagues at the Royal Botanic Gardens, Kew (K), United Kingdom and at the Missouri Botanical Garden (MO), USA. Through these and other contacts access to a large volume of existing grass descriptors from the World Grass database has been obtained. This information and that obtained from a variety of other sources form the basis of the contents of the 'containment hierarchies'.

Furthermore, to facilitate those unfamiliar with the macromorphology, micromorphology, anatomy etc. of a corn/maize plant an interactive corn plant is being developed for access via the world wide web. This should be a very educational facility. Some of these innovations are represented in the accompanying flow-chart. For further information contact Leszek Vincent – Leszek@missouri.edu.

COLUMBUS, OHIO Ohio State University

The maize Mp1 gene encodes a WD-repeat protein similar to An11 and TTG

--Hernandez, JM, Pizzirusso, M, Grotewold, E

Myb domain proteins in conjunction with bHLH proteins regulate the flavonoid accumulation pathway in diverse plant species (Mol et al., TIPS 3:212-217, 1998), as well as trichome formation in *Arabidopsis thaliana*. These proteins share substantial homology across species and in some cases they have been shown to be functionally interchangeable.

The maize anthocyanin accumulation pathway has been well characterized and its regulation is well understood. The Myb domain proteins C1 or PL require the presence of the bHLH proteins R or B to activate transcription of the structural genes of the pathway. It is not clear however how the activity of these transcription factors is modulated. In both Petunia and Arabidopsis factors that act upstream of the known regulators of flavonoid accumulation and trichome development have been found. In the case of Petunia, a cytosolic WD-repeat protein is involved in the regulation of accumulation of anthocyanins, and mutants in An11 do not accumulate pigments in the corolla. Overexpression of An2, the Petunia orthologue of C1, is able to activate the dfr promoter in an An11 mutant background suggesting that An11 acts upstream of An2 (de Vetten et al., Genes & Dev. 11:1422-1434, 1997). TTG is another WD-repeat protein involved in the accumulation of anthocyanins as well as trichomes in Arabidopsis (Walker et al., Plant Cell 11: 1337-1349, 1999). The effects of ttg mutations are more pleiotropic than those of An11 (Koornneef, Arabidopsis Inf. Serv. 18: 45-51, 1981). Lloyd et al. showed that overexpressing the maize R gene in ttg mutants restored both anthocvanin accumulation and trichome formation, suggesting that TTG is higher in the regulatory hierarchy than the bHLH proteins (Lloyd et al., Science 266: 436-439, 1994).

To determine whether a similar hierarchy of regulator proteins is present in maize, we used degenerate primers to conserved regions of *An11* to generate a PCR from maize seedling polyA+, which was RNA and then used as a probe to screen cDNA and genomic maize libraries. A gene called *Mp1* with no introns and encoding a protein of 410 amino acids (45 kD) was identified. MP1 is also a WD-repeat protein and it shares high sequence identity with AN11 and TTG (Table 1). A northern blot of polyA+ mRNA from various maize tissues indicated that MP1 is expressed throughout the entire plant. This is consistent with the expression patterns of AN11 and TTG (de Vetten et al., Genes & Dev. 11:1422-1434, 1997; Walker et al., 1999). Analysis of the *Mp1* sequence indicates that there is no nuclear localization signal and suggests that it might encode a cytosolic protein, similar to *An11*. Preliminary experiments suggest that *Mp1* is incapable of complementing a *ttg* mutant.

Table 1. Percent identities of MP1 to other WD-repeat proteins.

	TTG	AN11
MP1	58.8	59,8
TTG		79.5

Mapping experiments have positioned Mp1 to the long arm of chromosome 5 close to Pac1, a recently identified locus which is involved in anthocyanin accumulation in the aleurone. Examination of the level of expression of the structural genes and the regulators of the pathway in *pac1* mutants revealed that the levels of expression of only the former but not the latter were dramatically decreased (Selinger and Chandler, Plant Cell 11: 5-14). This is a similar situation to the one reported for *An11* in which the levels of *An2, Jaf13* and *An1* were not decreased in *an11* mutants (de Vetten et al., Genes & Dev. 11:1422-1434, 1997). In addition to failure to accumulate anthocyanins neither *pac1* or *an11* mutants show any other phenotype which contrasts with the more pleiotropic effects of *ttg* mutations. Whether *Mp1* and *Pac1* are the same gene is an open question that needs further investigation.

Phylogenetic analysis indicates that MP1 is closely related to AN11 and TTG, and that these proteins form a family of proteins that are widespread among animals and plants as suggested by de Vetten et al. Figure 1. WD-repeat proteins are usually part of signal transduction cascades, and are involved in protein-protein interactions. It is possible that this new family of WD-repeat proteins is involved in a signal transduction cascade that ultimately modifies bHLH and/or Myb domain proteins enabling them to activate transcription and switch on the pathways in which they are involved.

Preliminary analysis of green fluorescent compounds induced by ectopic expression of the P gene

--Lin, Y, Dong, X, Grotewold, E

The maize P gene, an R2R3 myb transcription factor, controls 3-deoxy flavonoid and phlobaphene biosynthesis (Grotewold et al. Cell 76: 543-553, 1994). In the pericarp, P regulates the accumulation of a subset of flavonoid biosynthetic genes (*C2*, *Chi1* and *A1*). The ectopic expression of P in cultured BMS cells induces the accumulation of distinct classes of flavonoid and phenylpropanoid compounds, as well as orange-fluorescent bodies (Grotewold et al. Plant Cell 10:721-740, 1998). To gain further understanding of P function in maize cells, we used BMS cell lines transformed with ERE::P (P driven from an estradiol-inducible promoter, Bruce et al. Plant Cell 12, in press). This provides an ideal experimental system to investigate the activation of a branch

Figure 3. HPLC Chromatograph (340nm) of ERE::P cell line before (A) and after 120 hours induction with estradiol (B). Temporal accumulation of chlorogenic acid (C) and ferulic acid (D) in the ERE::P cell-line induced with estradiol.

of flavonoid biosynthesis, and the distribution and subcellular localization of secondary metabolites. A new type of green fluorescent vacuole-like bodies (GFVLB) was found in BMS cells transformed with ERE .: P. These fluorescent vacuoles have different sizes and shapes, and they often localize in the cytoplasm close to the plasma membrane, and appear to be involved in delivering green fluorescent compounds to the cell wall. A GFVLB attached to the cell wall, which shows green fluorescence, was seen in some cells. The GFVLB may originate from SER through vesicles, because a tube-like GFVLB and a GFVLB fused with several small vacuoles were also observed in some cells. The GFVLB were found only in the BMS cells transformed with ERE .: P, and were not found in either BMS cells transformed with ERE::Luc (luciferase driven from the estradiol-inducible promoter), or untransformed BMS cells. Although GFVLB exists in both induced and uninduced BMS cells with ERE .: P, the number of cells containing GFVLB in the 5-days induced cells is four times higher than in uninduced cells (Fig. 1, page 26).

The compounds responsible for the fluorescence of GFVLB remain to be identified, but preliminary TLC analysis has been initiated. 3-deoxy flavonoids and phenylpropanoids accumulate in ERE::P BMS cells after induction with estradiol (Fig. 2, page 26, and Fig. 3). Accumulation of flavan-4-ols reached a maximum at 6 days after induction, but remained at a very low level in uninduced cells. Of the five identified compounds, only ferulic acid is present at significant levels in the uninduced cells, consistent with previous findings (Grotewold et al. Plant Cell 10:721-740, 1998). After induction, ferulic acid levels stay high for several days (Fig.3D). Thus, ferulic acid and the fluorescent compounds present in GFVLB appear to share similar patterns of temporal expression. In addition, other types of fluorescent bodies were identified in both induced and uninduced BMS cells with ERE::P. They are

spherical, nonphotobleaching, intensely orange fluorescent bodies very similar in properties to those 35S::P-expressing BMS cells (Grotewold et al. Plant Cell 10:721-740, 1998). The fluorescent compounds present in these bodies also show very strong red fluorescence under a 510-560 nm excision filter. The chemical nature of this second type of fluorescent compound is not known either. We believe that these fluorescent compounds will provide unique tools to investigate transport and subcellular localization of plant secondary metabolites.

DNIEPROPETROVSK, UKRAINE Institute of Grain Farm, UAAS

Biochemical and morphobiological estimation of the progeny of a maize anther culture regenerant

--Satarova, TN, Savchenko, MP, Pismenetskaya, IY, Chernousova, NM

The level of the efficiency of maize selection is determined by the genofund of inbred lines. The haploid technique shortens the expense of obtaining inbreds. The method of haploid production through anther culture, which has been elaborated since 1975, nowadays has reached great results. Stable regeneration from pollen calli and embryoids has been obtained for different genotypes. However, morphobiological, biochemical and other peculiarities of pollen regenerants and their progeny have been studied only in part (Wan, Widholm, Plant Breed. Rev. 11: 199-224, 1993). The problem of expressing estimation of regenerants' genotypes, and the determination of their resemblance or differences with initial parental forms, are also of great importance. This paper is devoted to the electrophoretical and morphobiological analysis of the maize androgenic regenerant, its progeny and its parental forms.

The seeds of pollen regenerant And44 after the first (And₁44) and the second (And₂44) self-pollinations and the seeds of the donor hybrid H99xWf9 and its parental forms, lines H99 and Wf9, served as a material for electrophoresis. Electrophoretical analysis of storage proteins, zeins, was conducted in flat polyacrylamide gel.

Pollen regenerant And44 was obtained through anther culture of hybrid H99xWf9, colchicinated and planted into the soil. After the self-pollination of this regenerant we had obtained twelve grains of And₁44, eleven of which were analysed electrophoretically, and one was again planted in the field. After the self-pollination of this F1-plant and the getting of And₂44 - grains, part of them (fifteen grains) once more were taken for electrophoresis of storage proteins, and another part was anew planted in the field. The plants of lines H99 and Wf9 were also grown in the field for morphobiological investigations.

Electrophoretical spectra of zeins for all the analysed And₁4 4 grains (the first generation) and all the analysed And₂44 grains (the second generation) were the same. This means absence of segregation on given characteristics in the first and the second generations.

The electrophoretical spectra of the regenerant, its donor hybrid H99xWf9 and its parental lines H99 and Wf9 are shown in the figure. The spectrum of the regenerant was not identical to the spectrum of the donor hybrid. Differences in the intensity of the three lines were observed (1-3). One of the lines which was double in donor hybrid spectrum was single in the regenerant (4). The line in the upper part of the hybrid spectrum was absent in the regenerant one (5). The regenerant has some lines which were absent in the hybrid spectrum (6).

Figure. Electrophoretical spectra of maize androgenic regenerant And44(A), its donor hybrid H99xWf9(B), lines H99(C) and Wf9(D)

The spectrum of the pollen regenerant was close, but not identical to lines H99 and Wf9. The upper and middle part of the spectrum (high-molecular proteins) of the regenerant was similar to line H99, there were only differences in the intensity of some lines (2,7). The lower part of the regenerant spectrum had a resemblance with the parental line Wf9. Besides that, in the zone of

minor components the regenerant had a line which was present neither in paternal nor in maternal lines (8).

The results of the morphobiological analysis of progeny of pollen regenerant and lines H99 and Wf9 are represented in the table.

Table. Morphobiological characteristics of the line of pollen origin And44 and the parental lines of the donor hybrid, H99 and WI9,

Genotype	enotype Plant height		Number of d seedlings to flowering	ays from tassel	Number of days from seedlings to ear flowering		
	Average, on	Coefficient of varia- tion, %	Average, days	Coefficient of varia- tion, %	Average, days	Coefficient of varia- tion,%	
And44	132.9	6.55	751	4.13	76.4	5.66	
H99	112.4	891	73.8	5.53	73,2	4.03	
Wi9	162,7	5.99	702	5.45	70.8	6.62	

Morphobiological analysis showed that the progeny of And44 had intermediate position between H99 and Wf9 in plant height. As for number of days from seedlings to tassel and ear flowerings it surpassed both of the lines. The coefficient of variation of And44, which may serve as indexes of the evening of a line, for different characteristics were on the level of the inbreds H99 and Wf9.

The evening and the identity of electrophoretical spectra of storage proteins (zeins) obtained from the first and the second self-pollinations of And44 may give evidence of the homozygosis of the androgenic regenerant. The data of electrophoretical analysis are well conformed with the results of the morphobiological estimation. The electrophoretical spectrum of the pollen regenerant differs from the spectra of maternal and paternal lines and donor hybrid and testifies to the obtaining of a new line.

DURHAM, NORTH CAROLINA Duke University

Pilot study for heritability of enhanced drought tolerance in corn via *Tripsacum-Z. diploperennis* hybrids

--Eubanks, M

Eastern gamagrass, *Tripsacum dactyloides* L., is a native, perennial, warm-season C4 grass that has long been recognized for its remarkable ability to withstand drought. Physiological evidence that shows superior drought resistance in *Tripsacum* is based on high photosynthesis and water use efficiency in leaf gas exchange analysis (P. I. Coyne and J. A. Bradford, Crop Sci. 25:65-75, 1985). In a genetic study, R. G. Reeves and A. J. Bockholt (Crop Sci. 4:7-10, 1964) showed that *Tripsacum* confers increased drought tolerance to corn in maize-*Tripsacum* hybrids, but intergeneric sterility has impeded transfer of the drought resistant trait from *Tripsacum* to corn.

Zea diploperennis, a perennial grass closely related to corn also, exhibits agronomic traits associated with ability to withstand dessication stress. In a study of the linkage and inheritance of the gene for perennialism, W. C. Galinat (MNL 55:107, 1981) found that Z. diploperennis and its F1 and F2 hybrids with corn had traits associated with the capacity to withstand drought stress. In a 3-point test population of corn-diploperennis hybrids, P. C. Mangelsdorf and M. E. Dunn (MNL 58:54-55, 1984) demonstrated heterozygous progeny had robust root systems that may impart drought resistance. Such extensive root systems are also found in (corn X Tripsacum-diploperennis) plants that exhibit superior resistance to corn rootworm. The root biomass of these plants is approximately 50% greater than that of controls. This signals the possibility that the *Tripsacum-Z. diploperennis* genetic bridge might also be useful for transferring enhanced drought tolerance to corn.

A small-scale pilot study was conducted in a greenhouse at the Duke University Phytotron from March 8-16, 1999, to assess whether corn crossed with two different *Tripsacum-Zea diploperennis* hybrid lines exhibited enhanced resistance to drought when compared to corn. Plants were grown in Peter's professional potting soil in 10-inch diameter pots. Until the drought period, they were watered twice daily, and fertilized with one tablespoon Osmocote 14-14-14, plus they received liquid nutrient (modified Hoagland's solution) three times a week.

The number of treatment plants included seven of 97-1; three of line E; three of (97-5 X 97-1); four of (97-1 X 97-3), and three of B73 corn. Tripsacorn and Sun Star, the two parent drought resistant hybrids in the above lineages, were also included.

Drought stress was induced when the plants began flowering. Treatment plants received no water for five days from March 9-13, during which time controls were watered twice daily according to the normal regimen.

The goal was to achieve 30% reduction in plant available water (% PAW), which was estimated at approximately 20% reduction in pot weight, and not to exceed 50% before the end of the drought treatment. This was monitored gravimetrically by weighing each pot at full saturation when the drought stress was initiated and recording pot weight daily until the end of the drought. The summary of per cent pot weight loss in Table 1 shows that water loss over all the lines tested ranged from 21.7% to 39.4%, indicating there was significant reduction in % PAW during the drought test.

Water use efficiency was monitored by measuring stomatal conductance and net photosynthesis using a Licor 6400 open photosynthesis system. The numbers are reported in Table 1. Leaf rolling and wilting were also observed. These drought symptoms were pronounced in the B73 corn plants, but virtually undetectable in the hybrid lines. At harvest, grain dry weight and shoot biomass dry weight were recorded to provide an index of drought intensity among lines as well as between treatment and control plants within lines.

From the data presented in Table 1, it can be seen that most of the treated hybrid plants had a reduction in stomatal conductance and photosynthesis, signaling that the drought stress induced stomatal closure and consequently reduced levels of carbon dioxide available for photosynthesis. In some cases the differences were dramatic, and in others the reduction in numbers was minimal. Evidence of surprising drought resistance was exhibited by increase of predrought stomatal conductance and photosynthesis measurements in four hybrid plants, numbers 150 and 153 in the 97-1 line and numbers 144 and 146 in the (97-1 X 97-3) line (see Table 1). Table 1 shows that grain yield in drought stressed hybrid plants was greater than the controls except for plant 151 in the 97-1 line and plant 147 in the 97-1 X 97-3 line. This is in striking contrast to the drought stressed W64A corn plants, all of which had significant reduction in grain yield compared to the control.

The results of the drought pilot study revealed evidence of genetic segregation for drought resistance among (*Tripsacum*-

		Pre	drought	During Drought		Postdrought			
No.	Pedigree Breeding Lines	SC 8-Mar	PS 8-Mar	SC 12-Mar	PS 12-Mar	SC 16-Mar	PS 16-Mar	% Pot Wt. Loss 13-Mar	Dry Seed Wt/g 4-Jun
148	97-1	0.21	26.3	0.15	19.9	0.17	21.6	29.7	40
150	97-1	0.12	19.4	0.18	21.9	0.13	21.2	31.5	55.2
151	97-1	0.16	23.4	0.13	20.6	0.13	19,1	21.7	10.5
152	97-1	0.18	24.8	0.15	21.6	0.14	21	34.7	62.8
153	97-1	0.15	21.4	0.2	25.8	0.17	25.5	28.7	43.9
154	97-1	0.14	20.6	0.12	15.6	0.11	15.8	29,3	26.5
155	97-1	0.18	24.7	0.14	20	0.18	24.1	24.4	28.8
158	97-1 (control)	Not rec.						Watered	20.32
129	E	0.4	32.5	0.04	7.27	0.18	24.9	38.8	52.9
130	E	0.24	29.5	0	-0.133	0.14	20.8	39.4	90.9
9099	E	0.25	30.8	0.18	27.5	0.2	28.4	38.3	88.6
9100	E (control)	0,25	31.7	0.22	29.1	0.36	32.4	Watered	45.6
144	97-1 X 97-3	0.17	24.4	0.18	25.2	0.25	27.5	30.5	54.4
145	97-1 X 97-3	0.11	17.6	0.08	13	0.14	21.1	28	54.1
146	97-1 X 97-3	0.13	19.8	0.15	19.7	0.21	24.1	31.7	46.6
147	97-1 X 97-3	0.16	22.9	0.12	20.3	0.23	24.2	27.4	33.1
9064	97-1 X 97-3 (control)	Not rec.						Watered	35,4
	Maize Inbred								
161	W64A	0.13	0.1	0.14	22.5	16.5	21	34.8	27.7
162	W64A	0.14	0.12	0.14	22.2	20.7	21.7	38.9	23.7
165	W64A	0.14	0.11	0.13	22.6	19	19.1	41.7	15.6
166	W64A (control)	Not rec.						Watered	47.4
	Tripsacum-diploperennis Hybrids								
LG4	Sun Star	0.11	16.8	0.1	16.2	Not rec.	18.8	Not weighed	Not coll.
LG3	Tripsacorn	0.13	19	0.11	17.7	Not rec.	17.5	Not weighed	Not coll.

Zea diploperennis X corn) hybrid lines. The findings indicate there is good potential for superior drought resistance to be imparted to corn via a recurrent selection breeding program employing *Tripsacum-Zea diploperennis* in crosses with corn.

1999 growth chamber bioassays to test a natural resource for corn rootworm resistance

--Eubanks, M

T. F. Branson (Ann. Entomol. Soc. Amer. 64:861-863, 1971) reported that Tripsacum dactyloides is resistant to corn rootworm. A bridging mechanism for moving Tripsacum genes into corn has been achieved through wide cross hybrids between Tripsacum dactyloides and Zea diploperennis (M. W. Eubanks, Econ. Bot. 49:172-182, 1995). Efficacy of this genetic bridge for conferring natural rootworm resistance to corn has been demonstrated through a series of insect bioassays (M. W. Eubanks MNL 73:30, 1999; Amer. J. Bot. (suppl.):84:116, 1997; MNL 70:22-23, 1996; MNL 68:40-41, 1994). Results of insect bioassays conducted in 1999 that are part of a Phase II recurrent selection program for development of isogenic corn lines with natural rootworm resistance and were completed in 1999 are reported here. Results of Phase II bioassay #1 were reported in MNL 73:30, 1999. The work is supported by NSF grant no. 9801386.

The protocol for each assay reported below included *Tripsacum-Z. diploperennis* X corn hybrid lines and corn inbreds grown in growth chambers under controlled conditions at the Duke University Phytotron. The research design included three replicates of 128 plants per rep in a randomized block. Plants were grown in 4.5-inch diameter pots with nylon cloth covering the bottom of the pots to prevent larval escape out the holes in the bottom of the pots. Each plant was infested with 70 newly hatched first instar diapausing Western corn rootworm larvae at approximately three weeks post germination. The plants were

harvested three weeks after infestation. The roots were carefully washed, then scored using the 1-6 lowa rating scale (Hills and Peters): 1 = no damage or only a few minor feeding scars; 2 = feeding scars evident, but no roots eaten off to within 1.5 inches of the plant; 3 = several roots eaten off to within 1.5 inches of the plant, but never the equivalent of an entire node of roots destroyed; 4 = one node of roots completely destroyed; 5 = two nodes of roots completely destroyed; 6 = three nodes of roots completely destroyed. Plants that have a root rating of 1 or 2 are resistant. After scoring the roots, resistant plants (i.e. those with a root rating of one or two) were repotted in 10-inch diameter pots and transferred to the greenhouse for backcrossing to corn to advance the recurrent selection breeding program for development of rootworm resistant corn lines. Leaf tissue from selected resistant plants was sampled for DNA fingerprinting to identify co-segregating molecular markers.

Bioassay #2 Twelve lines were tested in the second Phase II growth chamber insect bioassay at the Duke University Phytotron. These included five breeding lines (A, C, 97-3 X C, E, 97-1 X 97-3), one corn inbred (W64A), five lines in a *Tripsacum* cytoplasm (TC64, TC64 X TC, TC64 X 97-1, TC64 X A, and TC64 X 97-5). Results are summarized in Table 1.

Table 1. Results of Phase II Insect Bioassay #2

					Root	Ratings		
Line	Treated	Controls	1	2	3	4	5	6
Α	50	17	3	4	21	22	0	0
C	15	4	2	5	4	4	0	0
97-3 X C	18	6	3	2	9	4	0	
E	32	8	2	4	17	9	0	0
E reciprocal	24	7	2	7	7	8	0	0
97-1 X 97-3	29	10	2	4	14	9	0	0
97-3 X 97-1	23	2	2	3	10	8	0	0
TC64	17	10	1	1	8	6	1	0
TC64 X TC	13	5	1	3	5	4	0	0
TC64 X 97-1	25	10	1	4	5	13	0	2
TC64 X A	14	6	0	0	3	5	3	3
TC64 X 97-5	14	6	0	1	3	8	0	2
W64A	3	3	0	0	3	0	0	0

After scoring, twenty resistant plants were repotted in 9inch pots for cross pollinating with corn to advance the recurrent selection program for the development of rootworm resistant corn lines. The resistant families from this bioassay were A, C, 97-3 X C, E, 97-1 X 97-3, 97-3 X 97-1, TC64, TC64 X TC, and TC64 X 97-1.

Bioassay #3 Eleven lines were tested in the third Phase II growth chamber insect bioassay at the Duke University Phytotron. These included two corn inbred lines B73 and W64A, and nine breeding lines including 97-1 X 97-3, 97-1 X 97-5, 97-5 X 97-1, 97-5 X TC, 97-5, 97-1, 97-3, 97-3 X TC, 2023, 2019 X 2023, and E. The results are summarized in Table 2.

Table 2. Results of Phase II Insect Bioassay #3

					Root	Ratings			
Line	Treated	Controls	1	2	3	4	5	6	
97-1	30	6	0	0	4	10	8	8	
97-3	27	6	0	2	9	14	2	0	
97-5	21	4	0	0	2	5	8	6	
97-1 X 97-3	32	6	0	1	12	14	5	0	
97-3 X TC	7	3	0	0	3	4	0	0	
97-1 X 97-5	31	4	0	0	4	19	7	1	
97-5 X 97-1	30	6	0	0	8	14	7	1	
97-5 X TC	30	6	0	0	7	17	5	1	
E	30	6	0	2	14	14	0	0	
2023	11	3	0	0	2	3	4	2	
2019 X 2023	7	4	0	0	2	3	1	1	
B73	8	14	0	0	0	1	6	1	
W64A	8	12	0	0	0	4	3	1	

After scoring, three resistant plants were repotted in 9-inch pots and transferred to the greenhouse for cross pollinating with corn to advance the recurrent selection program for the development of rootworm resistant corn lines. The resistant families from this bioassay were 97-3 and E. In this bioassay with breeding lines that are now greater than 75% corn, resistance appeared to be lost in all but two lines. The two resistant lines were carried forward in the recurrent selection program, and the non-resistant lines were eliminated. These results raised the possibility that it may require more extensive backcrossing of corn lines to the resistant hybrids Tripsacorn and Sun Star than had been anticipated to effectively move the trait into corn.

Bioassay #4 Seventeen lines were tested in the fourth insect bioassay. These included Sun Dance hybrid families from earlier trials that had been backcrossed to corn, then self-pollinated, plus the corn inbred B73. Results are summarized in Table 3.

Table 3. Results of Phase II Insect Bioassay #4

						Roo	t Rating	S	
Line	Treated	Resistant	Susceptible	1	2	Э	4	5	6
E (97-3-1X97-5-2)	30	9	21	0	9	18	3	0	0
E (97-3-2X97-5-5)	30	3	27	0	3	16	11	0	0
9094 X 7009	30	7	23	0	7	19	3	1	0
7057 X 6088/6021	28	1	27	0	1	12	14	1	0
8089X(4021XA188)	27	3	24	0	3	13	11	0	0
JY X 3029	22	6	16	0	6	9	4	0	3
3024 X W64A self	26	3	23	1	2	15	7	1	0
3024 X 6N615	28	1	27	0	1	15	9	3	0
97-5X97-1 BC B73	30	1	29	0	1	15	12	2	0
7099 X 7101	23	1	22	0	1	10	10	2	0
4021 X A188 self	24	1	23	0	1	8	8	5	2
3029 X A188 self	26	0	26	0	0	7	12	4	3
3028 X 6088	4	0	4	0	0	2	0	1	1
3028 X 7101	5	0	5	0	0	3	2	0	0
3028 X E	6	0	6	0	0	1	0	2	3
3024 X 7099	2	0	2	0	0	0	0	1	1
B73	21	0	21	0	0	4	11	3	3

Ten resistant plants were repotted in 9-inch pots for cross pollinating with corn to advance the recurrent selection program to develop rootworm resistant corn lines. In eleven of the families there was at least one resistant plant. The most promising families selected from this assay for further development in the breeding program were E (97-3-1X97-5-2), 9094 X 7009, and JY X 3029.

Bioassay #5 Ten lines were tested in the fifth bioassay. These included Sun Dance hybrid families from insect bioassay #4 that were crossed to corn then selfed or sib pollinated in the field during the summer of 1999. The lines were 99-1-2 (W64AXE), 99-2-3 (W64AXC), 99-15-4 (1056XW64A), 99-7-19 (7008XA188), 99-7-6 (7008XA188), 99-8-1 (7057XA188), 99-12-19A (7083A188), 99-12-5 X 99-12-3 (7083XA188), 99-16-3 (1091XW64A), and corn inbred W64A. Results are summarized in Table 4.

Table 4. Results of Phase II Insect Bioassay #5

						Roo	t Rating	s	
Line	Treated	Resistant	Susceptible	1	2	3	4	5	6
99-1-2	51	12	39	3	9	17	21	1	0
99-2-3	50	10	40	4	6	18	20	1	1
99-15-4	44	5	39	2	3	13	21	5	0
99-7-19	32	13	19	6	7	5	11	2	1
99-7-6	19	3	16	2	1	8	7	1	0
99-8-1	41	12	29	6	6	14	14	1	0
99-12-19A	47	12	25	2	10	16	19	0	0
99-12-5 X 99-12-3	54	30	24	14	16	12	12	0	0
99-16-3	55	20	25	7	13	18	15	2	0
W64A	6	0	21	0	0	4	11	3	3

Fifty-one resistant plants were repotted in 9-inch pots and transferred to tall growth chambers for cross pollinating with corn to advance the recurrent selection program and for selfing or sibbing to increase seed quantities of these resistant families. All hybrid families in this bioassay exhibited resistance to Western corn rootworm. The most promising ones for the breeding

Figure 1. Roots of resistant hybrid.

Figure 2. Roots of susceptible corn.

program were (99-12-5 X 99-12-3), 99-12-19A, 99-7-19, and 99-16-3. Compare the roots of the resistant hybrid in Fig. 1 to the roots of a susceptible corn plant in Fig. 2. These F8BC6 breeding lines that are now greater than 90% corn confirm efficacy of moving the Western corn rootworm resistance trait from *Tripsacum* into corn using conventional breeding methods, and establish proof of concept for crop improvement by using the *Tripsacum-Z. diploperennis* genetic bridge to transfer *Tripsacum* genes into corn.

Assay for proteinase inhibition in *Tripsacum-Zea diploperennis* X maize hybrids resistant to Western corn rootworm

--Eubanks, M, Cook, C

A defense response of plants to insect herbivory is production of proteinase inhibitors (Pls) with insecticidal activity. Zhao et al. (Plant Physiol. 111:1299-1306, 1996) demonstated that cysteine proteinase inhibitors have inhibitory activity against gut cysteine proteinases in third instar larvae of Western corn rootworm, *Diabrotica virgifera* LeConte (Coleoptera). Eastern gamagrass, *Tripsacum dactyloides* L., is resistant to Western corn rootworm (T. Branson, Ann. Entomol. Soc. Amer. 64:861-863, 1972), and resistance from *Tripsacum* has been transferred to corn using diploid perennial teosinte, *Zea diploperennis* Iltis, Doebley and Guzmán, as a bridging species (M. W. Eubanks MNL 71: 1999; Amer. J. Bot. (suppl.):84:116, 1997; MNL 70:22-23, 1996; MNL 68:40-41, 1994). In an insect bioassay for selection of rootworm resistant plants, three week old plants were infested with 70 newly hatched first instar diapausing Western corn rootworm larvae per plant. In order to measure the papain inhibitory activity and investigate whether there was a correlation between proteinase inhibition and resistance to corn rootworm, leaf samples were collected from the plants three weeks after infestation just prior to harvesting them for scoring the roots according to the lowa 1-6 root rating scale.

Bioassay #2 Twelve lines were tested in NSF Phase II insect bioassay #2 conducted at the Duke University Phytotron. The lines included corn inbred W64A, five breeding lines A, C, (97-3 X C), E, and (97-1 X 97-3), and five hybrid lines in a *Tripsacum* cytoplasm TC64, (TC64 X TC), (TC64 X 97-1), (TC64 X A), and (TC64 X 97-5). Root ratings for all lines are summarized below in Table 1. A root rating of 1 or 2 indicates strong resistance to corn rooworm herbivory.

Table 1. Summary of Root Ratings in Insect Bioassay #2

					Root	Ratings		
Line	Treated	Controls	1	2	3	4	5	6
A	50	17	3	4	21	22	0	0
С	15	4	2	5	4	4	0	0
97-3 X C	18	6	3	2	9	4	0	0
E	32	8	2	4	17	9	0	0
E reciprocal	24	7	2	7	7	8	0	0
97-1 X 97-3	29	10	2	4	14	9	0	0
97-3 X 97-1	23	2	2	3	10	8	0	0
TC64	17	10	1	1	8	6	1	0
TC64 X TC	13	5	1	3	5	4	0	0
TC64 X 97-1	25	10	1	4	5	13	0	2
TC64 X A	14	6	0	0	3	5	3	3
TC64 X 97-5	14	6	0	1	3	8	0	2
W64A	3	3	0	0	3	0	0	0

Papain Assay - A modification of the technique in Koiwa et al. (Plant J. 14:371-379, 1998) was used to determine papain inhibitory activity in the corn leaves. Four disks of leaf material yielding ~0.1 g/sample or ~7 cm²/sample were taken from each plant three weeks after infestation with corn rootworm larvae. Leaf disks were frozen at -80 C, then ground to a fine powder using liquid nitrogen in 1.5 ml microcentrifuge tubes. To extract the inhibitor, 1 ml of a solution of 50mM phosphate buffer pH 7.2, with 150 mM NaCl and 2 mM EDTA:2Na, was added to the leaf powder, approximately 10 ml per gram leaf tissue (fresh weight). This was vortexed for 10 s, then centrifuged at 12 000 g for 15 min. To preactivate the papain, 1 volume of 20µg/ml papain in 25mM NaPi pH 7.0, 20 mM 2-mercaptoethanol was incubated for 10 min at 40 C, combined with 2 volumes of 0.25M NaPi pH 6.0, 2.5mM EDTA:2Na, and then kept on ice. Next 0.1 ml of the inhibitor solution and 0.3 ml of the preactivated papain solution were combined and incubated for 5 min at 40 C. The reaction was started by adding 0.2 ml of 2.3mM (final concentration) Na-benzoyl-DL- arginine-b-naphthylamide (BANA). This was incubated for 10 min at 40C, then 1 ml of 2% HCl in ethanol was added to stop the reaction, and finally 1 ml of 0.06% p-dimethylaminocinnamaldehyde in ethanol was added to develop color. The samples were held for at least 30 min at room temperature for full color development. The absorbance of the final mixture was read in a spectrophotometer (Perkin-Elmer Lambda 3B) at 540 nm. The inhibitory activity was expressed as the percentage decrease in absorbance relative to the reaction with no inhibitor.

<u>Statistical Analysis</u> - Although there was considerable range in the inhibitory activity of individual plants for each line tested (see Table 2 below), correlation analysis revealed no relationship between proteinase inhibition and root rating. It is thus concluded that the resistance mechanism conferred via *Tripsacum* does not involve proteinase inhibition insecticidal activity like the Bt endotoxin that has been engineered into transgenic corn for resistance to European corn borer and is being developed for resistance to corn rootworm.

Table 2. Mean and Coefficient of Variation for Proteinase Inhibition Per Line Tested.

Line	N*	Min	Max	Mean	CV
A	53	31.78	75.73	52.97	19.9
С	19	27.51	62.65	41.99	26.4
97-3 X C	23	33.13	60.94	46.09	16.3
E	40	35.24	73.90	50.70	17.1
E reciprocal	32	26.36	67.65	49.11	24.3
97-1 X 97-3	41	28.52	70.45	50.33	20.4
97-3 X 97-1	29	25.63	73.64	54.26	20.2
TC64	40	25.90	77.24	50.32	26.1
TC64 X TC	18	36.38	75.71	52.19	23.6
TC64 X 97-1	36	27.67	73.00	53.72	23.4
TC64 X A	20	25.35	68.43	45.68	26.4
TC64 X 97-5	20	39.15	74.73	56.51	18.4
W64A	6	46.83	73.21	59.84	17.4

*N is the number of treated and control plants sampled for the papain assay.

DURHAM, NORTH CAROLINA Duke University BROOKINGS, SOUTH DAKOTA USDA ARS

1999 field trial to test natural resource for rootworm resistance --Eubanks, M, Riedell, W

T. F. Branson (Ann. Entomol. Soc. Amer. 64:861-863, 1971) reported that Tripsacum dactyloides is resistant to corn rootworm. A bridging mechanism for moving Tripsacum genes into corn has been achieved through wide cross hybrids between Tripsacum dactyloides and Zea diploperennis (M. W. Eubanks, Econ. Bot. 49:172-182, 1995). Efficacy of this genetic bridge for conferring natural rootworm resistance to corn has been demonstrated through a series of insect bioassays (M. W. Eubanks MNL73:30, 1999; Amer. J. Bot. (suppl.):84:116, 1997; MNL 70:22-23, 1996; MNL68:40-41, 1994). Under the auspices of NSF grant no. 9801386, a field trial testing efficacy of the rootworm resistance trait in crosses between Tripsacum-Z. diploperennis and corn under field conditions was conducted at the USDA Northern Grain Insects Research Lab in Brookings, SD, during the summer of 1998 (M. Eubanks and W. Riedell, MNL 73:29-30, 1999). Results of a second field test conducted during the summer of 1999 are reported here.

Thirty seeds of each of two corn inbreds, B73 and W64A, and seven Tripsacum-Z. diploperennis X corn breeding line crosses (9015, 9094 X7009, [8089 X (4021 X A188)], 97-5 X 97-1, 97-3 X 97-5, JY X 3029, and 5004X JW2) were planted at the USDA Northern Grain Insects Research Lab in May, 1999. The 65 ft X 70 ft plot was flagged out and staked in six rows spaced 40 inches apart on May 6. The plot consisted of eight test rows surrounded with a corn buffer row on both sides of the test rows. On May 13, test rows were infested with 1400 viable Western corn rootworm eggs per linear foot of row. To accomplish infestation. eggs were mixed with room temperature agar and were applied to the soil through an anhydrous ammonia knife at a depth of 3 to 4 inches. Kernels were then hand planted into the furrow to a depth of 2 inches and a spacing of 9 inches. Two biophenometers were placed in the soil to a depth of four inches in two of the buffer rows of the experimental plot to monitor GDD accumulation.

All plants were dug and the roots washed and rated according

to the lowa (a.k.a. Hills and Peters) scale July 12, 1999. Root ratings are: 1 = no damage or only a few minor feeding scars; 2 = feeding scars evident, but no roots eaten off to within 1.5 inches of the plant; 3 = several roots eaten off to within 1.5 inches of the plant, but never the equivalent of an entire node of roots destroyed; 4 = one node of roots completely destroyed; 5 = two nodes of roots completely destroyed; 6 = three nodes of roots completely destroyed. Plants that have a root rating of 1 or 2 are resistant. Results are summarized in Table 1.

Table 1. Results of Phase II 1999 Field Test, Brookings, SD

						Roo	t Rating	gs	
Line	Treated	Res.	Susc.	1	2	3	4	5	6
97-3-2 X 97-5-5	26	1	25	0	1	2	4	6	13
97-3-1 X 97-5-2	18	3	15	0	3	6	4	3	2
97-5 X 97-1	28	3	25	0	3	7	11	7	0
97-3-1 X 97-5-3	20	2	18	0	2	3	5	5	5
(8009 X 4021) X A188	26	1	25	0	1	8	1	3	13
9015	24	0	24	0	0	4	3	9	8
9094 X 7009	21	14	7	0	14	2	2	2	1
JY X 3029	7	1	6	0	1	3	4	0	0
B73	25	0	25	0	0	3	7	5	10
W64A	27	0	27	0	0	0	5	8	12

Since the corn controls in this field test were severely damaged (Fig. 1), it is clear we had a heavy rootworm infestation in the field in 1999. This indicates that strong natural resistance is present among the segregating progeny of most of the above F6BC4 families (Fig. 1). Two-thirds of the (9094 X 7009) plants were resistant when tested in the field. Seed from this family is being grown and self or sib pollinated to increase this line for further development in the recurrent selection breeding program. Field test results in 1998 and 1999 have confirmed that the rootworm resistance trait selected under controlled experimental conditions in growth chambers is also present under field conditions.

Figure 1. Top row: roots of resistant plants from three F6BC4 *Tripsacum-Z. diploperennis* X corn hybrid families. Bottom row: roots of corn inbreds B73 and W64A. Infestation of Western corn rootworm eggs was at a rate of 1400 eggs per ft of row.

DURHAM, NORTH CAROLINA Duke University MANHATTAN, KANSAS USDA ARS

Bioassays for grain weevil resistance in Tripsacum X Zea diploperennis

--Eubanks, M, Throne, J

One of the most serious insect pests to corn during grain storage is the maize weevil, *Sitophilus zeamais* Motschulsky (Coleoptera:Curculionidae). The adult female oviposits eggs into small holes she bores into the kernel. When the larvae hatch they feed on and develop inside the grain. No-choice bioassays were conducted to investigate whether Tripsacorn, a hybrid between *Tripsacum dactyloides* and *Zea diploperennis* that is resistant to corn rootworm, *Diabrotica virgifera*, might also possess resistance to grain weevils.

Three 35 g samples of Tripsacorn seed were equilibrated to 30 C and 75% relative humidity for 6 weeks. There were 3 control 35 g samples of Asgrow RX899 corn. At the end of the equilibration period, 5 *Sitophilus zeamais* adult females age 2-3 weeks were placed in each sample cage for 72 hours to lay eggs. Thirteen days after the ovipositing females were removed. Emerging adult progeny were sieved from the cages daily until no weevils had emerged for 2 weeks. No weevils emerged from the Tripsacorn, and X-ray examination of the kernels indicated that no eggs had been laid in the Tripsacorn seeds. Mean number of adults emerged from the corn controls was 30.3 (SD = 6.43).

Tripsacorn kernels are enclosed in a hard shell-like seedcoat, and it was hypothesized that the hardness of the seed was responsible for lack of weevil oviposition. In order to test this, a second experiment was conducted using ground up Tripsacorn kernels. Since maize weevil development is poor on ground seed. the sawtoothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) was employed in this bioassay. There were twenty replicates of one Tripsacorn kernel each weighing approximately 6 mg and twenty control replicates of 2 wheat kernels each which was about equal to a single Tripsacorn kernel. EachTripsacorn kernel or group of two wheat kernels was individually crushed with an aluminum mortar and pestle, then placed in a 0.4 ml centrifuge tube with a pinhole in the lid, and equilibrated for 1 week at 30 C and 75% RH. A single egg between 0 and 24 hr old was place in each tube. Fourteen days after infestation, tubes were checked biweekly for emerging adults. Emergence rate was 11 out of 20 on the wheat controls and 12 out of 20 on Tripsacorn. This shows that Tripsacorn seed can support insect growth when ground.

Intact Tripsacorn kernels were immune to maize weevil infestation. Given the difficulty in grinding the Tripsacorn kernels and the fact that insect growth occurred on ground Tripsacorn, immunity is probably due to the hardness of the kernels.

> FORT COLLINS, COLORADO Colorado State University VICTORIA, BRITISH COLUMBIA University of Victoria

Linkage distance between whp1 and ch1

--Byrne, PF, Styles, ED

Although the loci whp1 (white pollen1) and ch1 (chocolate peri-

carp1) have both been mapped to the distal end of the long arm of maize chromosome 2 (bin 2.09), the loci apparently had not been mapped in the same population. This region of chromosome 2 became of interest after large QTLs for silk maysin (a C-glycosyl flavone) concentration and corn earworm antibiosis were detected there (Byrne et al., Crop Sci. 38:461-471, 1998). *whp1* is a plausible candidate for the QTLs because it encodes chalcone synthase, which catalyzes the first step in the flavonoid pathway. Chalcone synthase activity is required for maysin synthesis, but it is not clear whether *whp1*, *c2* (which also encodes chalcone synthase), or both contribute to maysin synthesis in silks. Plants that are double homozygous recessive at *whp1* and *c2* produce white, infertile pollen.

Ch1 is a dominant factor for chocolate (tan to dark brown) pericarp and acts independently of p1, the transcription activator that controls expression of most other pericarp pigments. The biochemical basis of *ch1* is not known, but because its pigmentation is similar to that produced by other flavonoid pathway mutants (e.g., *bp1*, *A1-b*), we felt that it too should be considered a candidate locus for the maysin and antibiosis QTLs.

Independent of the interest in maysin, Derek Styles had developed the following stocks to obtain estimates of the linkage distance between *whp1* and *ch1*:

(whp1/whp1 Ch1/ch1 P-ww/P-wr R-g/(R-r) A3/a3 c2 b1-/pl1) x (Whp1/Whp1 ch1/ch1 P-rr/(P-ww) R-r c2 Pl1 in1 gl1)

(whp1/whp1 Ch/- (P-wr)/P-ww R c2 b1 -/pl1) x (Whp1/Whp1 ch1/ch1 P-rr/(P-ww) R-r c2 Pl1 in1 gl1)

(whp1/whp1 Ch/- P-ww/(P-rr) R-g/(R-r) c2 b1 -/pl1) x (Whp1/Whp1 ch1/ch1 P-rr/(P-ww) R-r c2 Pl1 in1 gl1

Seed of these stocks were planted in Columbia, MO in 1996 and used to pollinate *c2 whp1 ch1* plants. At harvest, pollen parents with chocolate pericarps were identified and crosses involving those plants were saved.

In 1997, plants from six ears of the crosses were planted in Fort Collins, CO. They were evaluated for pollen color at anthesis and for pericarp color at harvest. Plants arising from parentaltype gametes would be either white pollen plus chocolate pericarp, or yellow pollen plus non-chocolate pericarp, whereas recombinant gametes would give rise to plants that were white pollen plus nonchocolate pericarp, or yellow pollen plus chocolate pericarp.

Results were as follows:

		Number				
Stock	No. of ears evaluated	W, Ch	W, CI	Y, Ch	Y, CI or R	Recombinant fraction
1	1	80	15	16	95	31/206 = 0.150
2	3	46	11	9	49	20/115 = 0.174
3	2	39	14	4	62	18/119 = 0.151
Pooled	6	165	40	29	206	69/440 = 0.157

W, Ch = white pollen, chocolate pericarp W, Cl = white pollen, clear pericarp

Y, Ch = yellow pollen, chocolate pericarp

Y, CI or R = yellow pollen, either clear or red pericarp

The recombinant fraction for the three stocks, ranging from 0.150 to 0.174, and the value for the pooled data (0.157) correspond well to the inferred linkage distance of 14 cM in MaizeDB (Genetic Map of chromosome 2). There may have been some confounding of the Y,Ch and Y,R classes, because chocolate pigmen-

tation is reportedly obscured in red pericarps. However, it was generally possible to distinguish between purely red pericarps and those with both red and chocolate pigments. If some Y,Ch plants were mistakenly classified as Y,R, the result would be an underestimation of the true linkage distance.

Based on these results, the position of the QTLs proximal to *whp1*, and the position of *ch1* distal to *whp1*, we conclude that *whp1* is a better candidate than *ch1* for the maysin and antibiosis QTLs. Other strategies are currently being pursued to determine the influence of *whp1* and *c2* on maysin concentration (M. McMullen, personal communication).

IRKUTSK, RUSSIA

Institute of Plant Physiology and Biochemistry

Characterization of nuclear and mitochondrial DNA topoisomerases I

--Konstantinov, YM, Tarasenko VI

It is well known that along with DNA and RNA polymerases DNA topoisomerases are of key importance in the fundamental genetic processes such as replication, transcription, recombination and repair. Once deprived of topoisomerases the cell fails to make up for them and thus perishes. Besides the nucleus, topoisomerases are found in plant mitochondria and chloroplasts. No molecular biological studies of maize topoisomerases I of nuclear and mitochondrial localization have been made up to the present. Neither topoisomerase I gene structure, nor the features of their protein products, is known.

We have previously described (MNL 71:39-40,1997; MNL 73:39-41, 1999) some characteristics of mitochondrial type I DNA-topoisomerase including its sensitivity to different type inhibitors and redox conditions. The aim of the present work was to investigate some characteristics of nuclear topoisomerase I in comparison with the enzyme of mitochondrial localization.

Nuclei were prepared from 3-day-old etiolated maize seedlings of hybrid VIR42 MV generally as described earlier (Chiatante, Bryant, J. Exp. Bot. 45:959-965, 1994). The purification of topo I from isolated nuclei included the stages of organelle solubilization, ammonium sulfate fractionation, chromatography on the column with DEAE-Toyopearl, and chromatography on the column with single-stranded-DNA-cellulose. The mitochondria were isolated by a standard method of differential centrifugation. The method of topo I purification from mitochondria was the same as described earlier (MNL 73: 40-41, 1999). Protein was determined by the Lowry method.

We have previously reported (MNL 73: 39-40, 1999) about the redox modulation of mitochondrial topo I activity under different redox conditions. The study of the influence of redox conditions on the activity of nuclear topo I showed that this enzyme has similar sensitivity to the redox agents used as compared with mitochondrial enzyme. The addition of both oxidising and reducing agents caused changes in the activity of topo I from the nucleus. An activation of topo I was shown in the presence of reduced agents such as sodium dithionite or reduced glutathione and its significant repression following the addition of oxidised agents such as potassium ferricyanide or oxidised glutathione.

We have studied also the effects of different topo I inhibitors (camptothecin, distamycin A, netropsin, bis-netropsines, Hoechst33258, Hoechst33342) on the relaxation activity of this enzyme. There were no significant differences between nuclear and mitochondrial topo I in sensitivity to these inhibitors. However, nuclear topo I can be distinguished from its mitochondrial counterpart by its different affinity to single stranded-DNA-cellulose. In contrast to mitochondrial topo I, which binds only to double-stranded-DNA-cellulose, enzyme from nuclei readily binds to this nucleic acid resin. For plant nuclear and mitochondrial topo I, it is the only known difference between these enzymes, which might point to dissimilarities in their protein structure.

Financial support from the INTAS (Project Number 97-0522) is acknowledged.

DNA synthesis in organello in mitochondria of maize and wild perennial crop *Elymus sibiricus* under different temperature conditions

--Konstantinov, YM, Lutsenko, GN, Zukova, VV, Subota, IY, Arziev, AS

Comparative analysis of DNA-synthesizing systems of mitochondria of maize and *Elymus sibiricus*, a perennial wild crop, is of considerable interest from the point of view of biotechnological creation of new forms of maize with increased cold resistance.

The present work was aimed at the investigation of DNA synthesis in the system *in organello* in mitochondria of maize and *Elymus sibiricus* under various temperature conditions. The mitochondria were prepared from 3-day-old etiolated seedlings of maize (*Zea mays* L. hybrid VIR 42 MV) and 9-day-old etiolated seedlings of *Elymus sibiricus* by a standard method of differential centrifugation. DNA synthesis was measured in mitochondria according to the method of Schegget and Borst (Biochim. Biophys. Acta 95:235-248, 1971) with the use of ³²P-dATP (specific radioactivity was 148 PBq mol⁻¹). All kinetic data were obtained from at least 3 independent experiments. Statistical analysis was performed using Students paired t-test.

The crucial peculiarity of DNA-synthesizing system of mitochondria of *Elymus sibiricus* (Fig. 1) is a high level of mtDNA synthesis with a low temperature (+5 C). With the optimal temperature (+30 C) the activity of mtDNA synthesis of *Z.mays* and *E.sibiricus* showed practically no difference. The increase of incubation temperature up to +40 C demonstrated significant growth of mtDNA synthesizing activity of *Z. mays* and a considerable repression of this process in mitochondria of *E. sibiricus*. With the

Figure 1. The activity of DNA *in organello* synthesis in mitochondria of maize and *Elymus sibiricus* under different temperatural conditions. 2.m., *Zea mays*; E.s., *Elymus sibiricus*. objective to clarify peculiarities of structural and functional organization of *E. sibiricus*, mitochondrial genome cloning of mtDNA sequences of this crop was conducted in bacterial plasmid vectors.

DNA synthesis in mitochondria under model changes of redox conditions

--Konstantinov, YM, Subota, IY, Podsosonny, VA, Arziev, AS

In spite of extensive studies of mitochondrial gene functioning, the molecular mechanisms that govern the expression of plant mitochondrial genomes in response to changes of metabolic conditions in the cell and the whole organism have still remained poorly understood at present. We have previously reported (MNL 69:63-64, 1995; MNL 70:29-30, 1996; MNL 71:40-41, 1997; MNL 72:33, 1998) on the effect of different redox conditions on mitochondrial genome expression regarding DNA, RNA and protein synthesis in organello. Significant activation of transcription and translation in mitochondria under oxidising conditions, created by addition of potassium ferricyanide, and its profound repression under reducing conditions in the presence of sodium dithionite can indicate the existence of a special mechanism of redox regulation of genetic functions in plant mitochondria.

We showed (MNL 69:63-64, 1995) a significant decrease in the DNA-synthesizing activity in the presence of both oxidising and reducing agents being more prominent in the case of dithionite. Apart from the apparent triggering of the genetic regulatory mechanism by potassium ferricyanide and sodium dithionite, the redox agents used can also modify other functional parameters of mitochondria as well, in particular, the activities of energy transformation and utilization.

The aim of the present work was to examine the mitochondrial DNA synthesis in organello under changes of redox conditions by the addition of carbonyl cyanide chlorophenylhydrazone (CCCP), an uncoupler of oxidative phosphorylation. It is known that in the presence of CCCP the carriers of the mitochondrial respiratory chain are converted to more oxidising states (Muraoka and Slater, BBA 180:221-226, 1969).

The mitochondria were prepared from 3-day-old etiolated seedlings of hybrid VIR42 MV. The isolation of mitochondria and registration of DNA synthesis in organello were the same as described in our note from this issue.

Figure 1. The effects of redox conditions on DNA synthesis in mitochondria. FeCN, potassium ferricyanide; CCCP, carbonyl cyanide *m* -chlorophenylhydrazone.

Figure 1 shows that the addition of CCCP caused an activation of DNA synthesis in mitochondria. Such an effect of CCCP presumably results from redox states of the carriers of the respiratory chain. The effects of such redox agents as sodium dithionite and potassium ferricyanide on mitochondrial DNA synthesis in organello were shown to be drastically changed in the presence of this uncoupler. We registered even an activation of DNA synthesis in mitochondria when CCCP was added after sodium dithionite. Therefore the uncoupler of oxidative phosphorylation caused the elimination of the inhibitory effect of such a reducing agent as dithionite on DNA-synthesizing activity. The addition of CCCP also eliminated the inhibition of DNA synthesis in oxidised conditions created by addition of ferricyanide. The results obtained suggest that there is an activation of DNA synthesis in mitochondria under uncoupling conditions. We suggest also that this mechanism of redox control of genetic functions in these organelles may operate efficiently in vivo on the level of mitochondrial DNA replication.

JINAN, CHINA

Maize Research Institute, Shandong Academy of Agricultural Sciences

Effect of mass selection on the adaptive improvement of two subtropical maize (Zea mays L.) populations

--Liu, Z

Six cycles of mass selection for time to silk, shorter plant height and harvest indices were conducted in two subtropical maize populations in Jinan (long day condition) from 1991 to 1999. One of the populations chosen was CIMMYT's population 68QPM, a white semident kernel, intermediate in maturity, the genetic base of 30% to 40% temperate and 60% to 70% tropical germplasm. Another was CIMMYT's population 70QPM, a yellow dent kernel, intermediate to late in maturity, the genetic background of pool 34QPM and cycle four of temperate tropical yellow dent high oil QPM.

The results of the evaluating experiments showed that average plant heights of improved Pob.68QPM and Pob.70QPM were reduced by 42.0% and 45.0%, 15.2 cm and 16.3 cm per cycle. Times to silk (numbers of day from planting to 50% extruded silks) were decreased 9 d and 10 d, 1.5 d and 1.7 d per cycle. The harvest indices of improved maize materials had increased from about 30% to 45% and 47%, with average grain yield at optimum planting densities increased from about 1800 kg/ha and 2400 kg/ha to 2625 kg/ha (45.8%) and 3588 kg/ha (49.5%) respectively.

In addition to selecting for time to silk, shorter plants to improve adaptability, we have selected for other characters such as reduced tassel size (number of branches). Over the six cycles of selection in these two populations, the results showed that tassel size reduced as grain yields and harvest index were increased significantly. The study also demonstrated the negative correlation between smaller tassel and grain yield, but the high correlation between shorter plant height and time to silk.

Studies on utilization of tropical and subtropical maize germplasm --Liu, Z

Four self-lines (Ye 107, Ye 8112, Huangying o2 and Qiqun 32) were crossed with tropical and subtropical maize germplasm (pool32, pool33, pool34 and population 70) ever since 1984.

Exotic germplasms were introduced into temperate materials (above self-lines) according to different proportions (from 25% to 75%) for increasing genetic diversity, raising general combining ability (GCA) and resistance ability to disease and stress environments.

Three elite self-lines, YL1732, YL8234 and QIL3233, were bred by the above method in 1998. YL1732, a yellow semident self-line based on 75% subtropical germplasm and 25% temperate germplasm, was selected from 3 generations of inbreeding and 5 generations of self-inbreeding. Better performance was YL8234, an early maturing yellow flint self-line made up of 50% subtropical germplasm and 50% temperate germplasm. QIL3233, an intermediate to early maturing yellow dent material, was based upon inbreeding 4 generations and self-inbreeding 5 generations of temperate population 32 subtropical pool33. At present, these self-lines are used for breeding elite maize hybrids in summer planting corn region in China.

The evaluating experiments of selected self-lines in Jinan showed that disease indices of maize leaf blight (*Helminthosporium turcicum* Pass.) and leaf spot (*Helminthosporium maydis* Nisik.) decreased 61.5% to 78.9% and 53.8% to 69.4% respectively. Plant rates of maize stalk rots (*Fusarium graminearum* and *moniliforme*) and maize rough dwarf decreased 84.1% to 93.2% and 86.7% to 98.2%. Number of green leaves at maturity increased 2.6 to 4.4 times, and average grain yield also increased 20.0% to 55.6% respectively.

JOHNSTON, IOWA Pioneer Hi-Bred International, Inc.

Use of maize EST databases to identify and isolate homologs for genes with putative function identified from other species and genera

--Helentjaris, TG

With the advent of large collections of ESTs (expressed sequence tags) for maize, it is now possible to "mine" these databases for corn homologs to genes characterized first in other species where some level of functional understanding has been established. While cloning methods based upon hybridization are sometimes successful, they are often frustrated by low degrees of nucleotide similarity, depending upon the availability of a gene sequence from a species of close similarity. "in silico" cloning via computer analyses of EST collections on the other hand can be comparatively straightforward when these collections are available and comprehensive in their gene coverage. Instead of dedicating several person-months to isolate a maize homolog starting from an Arabidopsis or other dicot sequence, this search can take minutes on the computer. Starting with sequences from more distantly-related organisms, such as yeast or mammals, where many of our current gene sequences and understanding are currently archived, isolation by hybridization can be nearly impossible but is again greatly facilitated by analyses of computer-translated EST sequences. Consequently it is no longer a daunting task to isolate homologs for individual genes first characterized in other species and where known, whole pathways can now be identified and isolated in corn for study.

For the last couple of years I have been mining the original Pioneer/HGS EST database, and more recently the Dupont corn EST database, for maize homologs for specific biochemical, hormonal, and gene regulation pathways. My purpose was to acquire corn homologs representing pathways of interest to our team's research in yield stability. This list of putative corn homologs runs into the several hundreds of ESTs and many of these have been characterized by our group at some level, i.e. full length insert sequencing, mapping, expression, in some cases even TUSC-based searches for insertional inactivations. While they have proven invaluable for our purposes, we are still limited by a more detailed understanding of their function in corn and are unable to dedicate enough time to fully explore them. Consequently we would like to make a number of these clones available to interested researchers who wish to characterize them further in corn, emphasizing the placement of groups of clones by pathway with individual investigators. At this point it is relatively straightforward for us to arrange a materials transfer agreement to supply public researchers not only with the clones but also any other associated information and biomaterials we have to facilitate their own studies. Our hope is that as knowledge about these genes grows, it will of course add to our understanding the role of these genes within the context of our own research efforts. I urge researchers who might be interested in any of the genes or pathways in the appended table to contact me directly and discuss their interest. An even larger set of clones with somewhat less characterization is also available from pathways including carbohydrate metabolism and starch biosynthesis, cell cycle genes, and other hormone pathways.

The appended table contains a list of individual maize ESTs/clones which have each been characterized to represent different genes, the first column containing a clone identifier. The next column contains a descriptive name for its closest homolog. Next is a column indicating whether the clone is full length or not. The fourth column indicates a chromosomal bin where the clone has been mapped in the maize genome. The last column indicates those genes where a TUSC search for *Mu* insertions has been initiated.

EST	candidate gene	pathway	size	map location	TUSC?
001	ABA insensitive 1/2 mutant	ABA	no		no
002	ABA insensitive 1/2 mutant	ABA	no		no
003	ABA insensitive 1/2 mutant	ABA	no		no
004	ABA insensitive 1/2 mutant	ABA	no	3.09-10	no
005	ABA insensitive 1/2 mutant	ABA	no	6,07-08	no
006	ABA insensitive 1/2 mutant	ABA	no		no
007	ABA insensitive 4/sun06 mutant	ABA	R.		no
008	ABA-induced protein kinase	ABA	FL.	9.04	no
009	ABA-induced protein kinase	ABA	no	7.04	no
010	farnesyl tranferase a - subunit	ABA	R.	2.08	no
011	farnesyl tranferase b- subunit	ABA	R.	3.06	yes
012	ADP-G PPase/bt2-like	carbohydrate metab	A.	2.06	yes
013	ADP-G PPase/sh2-like	carbohydrate metab	FL.	6.08	no
014	GRR1	carbohydrate metab	no		no
015	hexose/sugar transporter	carbohydrate metab	no		no
016	hexose/sugar transporter	carbohydrate metab	R.		no
017	hexose/sugar transporter	carbohydrate metab	R.		no

EST	candidate gene	pathway	size	map location	TUSC?
018	hexose/sugar transporter	carbohydrate metab	no	5.04	no
019	hexose/sugar	carbohydrate metab	R.		no
020	hexose/sugar	carbohydrate metab	R.		no
021	SPF1 transcription	carbohydrate metab	no	7.04	no
022	sucrose symporter	carbohydrate metab	no		no
023	sucrose symporter	carbohydrate metab	R.		no
024	G-binding protein a- subunit	cytokinin response	FL.	1.02	no
025	G-binding protein b - subunit	cytokinin response	FL	1.09	no
026	G-coupled receptor	cytokinin response	FL.	6.04	yes
027	HP homolog	cytokinin response	R.		no
028	HP homolog	cytokinin response	R.		no
029	HP homolog	cytokinin response	R.		no
030	AP2-containing/DREB2	gene regulation	R.	8.02	yes
031	AP2-contaning/Tiny-like	gene regulation	no	8.03	ΠO
032	AP2-contaning/Tiny-like	gene regulation	R.	9.04	no
033	N2-regulated protein kinase	gene regulation	no		no
034	N2-regulated protein kinase	gene regulation	R		no
035	protein phosphatase/GLC7-like	gene regulation	R.		no
036	MAP kinase	signalling	R	9.06	no
037	MAP kinase	signalling	R.	2.08	no
038	MAP kinase	signalling	R	4.1	no
039	MAP kinase	signalling	R.		no
040	MAP kinase <aux< td=""><td>signalling</td><td>no</td><td>5.03</td><td>no</td></aux<>	signalling	no	5.03	no
041	MAP kinase <aux< td=""><td>signalling</td><td>R.</td><td>5.04</td><td>yes</td></aux<>	signalling	R.	5.04	yes
042	MAP kinase <ga< td=""><td>signalling</td><td>R.</td><td>9.05</td><td>yes</td></ga<>	signalling	R.	9.05	yes
043	MAP kinase <sa< td=""><td>signalling</td><td>00</td><td>6.01</td><td>no</td></sa<>	signalling	00	6.01	no
044	MAP kinase <sa< td=""><td>signalling</td><td>R.</td><td>6.01</td><td>no</td></sa<>	signalling	R.	6.01	no
045	MAP kinase kinase	signalling	A.	9.03	no
046	MAP kinase kinase	signalling	no	5.08	no
047	MAP kinase kinase	signalling	HL.	3.07	no
048	MAP kinase kinase	signalling	no	5.05-06	no
049	kinase	signalling	п	3,0778,06	no
050	MAP kinase kinase kinase	signalling	no		no
051	MAP kinase kinase kinase	signalling	R	1.1	no
052	MAP kinase kinase kinase	signalling	no	9.00-01	no
053	MAP kinase kinase kinase	signalling	no	10.04	no
054	MAP kinase kinase kinase CTR1-like	signalling	no	5.06	no
055	MAP kinase kinase kinase epsilon	signalling	FL.		no
056	MAP kinase phosphatase	signalling	no	1.08	no
057	MAP kinase phosphatase	signalling	FL.	5.07	yes
058	"Os-1p, At histidine kinase"	signalling	no	8.06	no
059	"protein phosphatase, MP2C >STE11"	signalling	no	6.00-01	no
060	MCAF1/POP	sugar sensing	no	7s	no
061	Prl1	sugar sensing	FL	1.09	yes
062	SNF1	sugar sensing	no	2.05	no
063	SNF1	sugar sensing	FL.		yes
064	SNF1	sugar sensing	no	4.00	no
065	SNF1	sugar sensing	no	1.03	yes
066	SNF1	sugar sensing	FL		no
060	SNF1 SNE1/MDI/A	sugar sensing		3.06	10
000	SNF1/WER4	sugar sensing	IL no	1.08-11	10
070	"snindly-like TPR-	sugar sensing	00	1.00-11	no
070	containing"	Sadar couquid			

New leaf mutation shr*-JH87, shredded leaf

--Trimnell, MR, Albertsen, MC, Noble, SW

In 1987 Steve Noble observed one of his F2 breeding lines searegating for a shredded leaf phenotype. This mutant does not express until after the juvenile phase of plant growth. Then, the leaf blade lamina becomes shredded between the horizontal veins of the adult-phase leaf. The cells between the veins do not undergo visible necrosis before becoming shredded. Depending upon the wind conditions, the phenotype can become very severe, with some leaves reduced to a mass of shredded strands of leaf material that is primarily composed of leaf vein. Figure 1 shows not only the extremely shredded appearance these plants can acquire, but it also shows how the wind can "tie" the shredded leaves into a tangled mass of leaf tissue. Steve gave remnant seed of this line from two different ear rows to us. We decided that the word "shredded" better described this mutant than did "slashed" (as is currently applied to a set of specific leaf mutations) and designated this mutant as shr*-JH87. It was planted in our 1990 Johnston nursery. One of the ear rows did not segregate, but the other one did. We made self- and sib-pollinations from this row and put the progeny seed in our cold room.

In 1998 we decided to again plant this mutant and to further characterize it in our Johnston nursery. We planted 2 self rows and 2 sib-pollinated rows. These were crossed with A632 and B73, reciprocally. These F1 crosses were then self-pollinated in our Hawaii winter nursery, and the resulting F2 seed was planted in our nursery this past summer. Segregation data for the previously mentioned plantings are shown:

Genotype	Wild-type	shredded leaf	Corrected X2(3:1)
Original Heterozygote Selfed (F2)	12 Plants	3 Plants	0.023
shr*-JH87 Homozygote Selfed Ear #1 (F3)	0 Plants	12 Plants	
shr*-JH87 Homozygote Selfed Ear #3 (F3)	0 Plants	6 Plants	
shr*-JH87/A632 Selfed Ear #1 (F2)	19 Plants	2 Plants	1.92
shr*-JH87/A632 Selfed Ear #2 (F2)	16 Plants	1 Plant	2.38
A632/shr*-JH87 Selfed Ear #1 (F2)	13 Plants	4 Plants	0.02
A632/shr*-JH87 Selfed Ear #2 (F2)	15 Plants	0 Plants*	
shr*-JH87/B73 Selfed Ear #1 (F2)	13 Plants	2 Plants	0.56
shr*-JH87/B73 Selfed Ear #2 (F2)	18 Plants	1 Plant	2.96

*Oil yellow looking plants segregated in this row.

During the summer of 1998, we also crossed shr*-JH87 with sl1 (slashed leaf 1) even though the shr*-JH87 phenotype is very distinctively different than the slashed leaf mutant phenotype. These test-crosses were grown in our Hawaii winter nursery. A total of 71 plants were observed without any plants showing either the shredded leaf or slashed leaf phenotypes. The leaves of shr*-JH87 can shred along nearly the entire length of the leaf blade between the parallel veins, although not every interveinal area will shred. With sl1, the leaves seem to slit primarily in distinct areas on the leaves, with some areas of the leaf remaining intact both anterior and posterior to a region of slashes. This does not occur in shr*-JH87 plants. Neuffer described a mutant, sl*-N1701, as resulting from a "weakening of midvein tissue (that) results in leaves falling apart longitudinally, like sl1". The leaves are further described as slitting following necrotic streaks (Maize DB). We plan to cross our mutant with his and to finish mapping the mutant. Leaf samples were collected for chromosome arm mapping this past summer.

Figure 1

New chromosome 3S mutant mssi*-DR87A

--Trimnell, MR, Fox, TW, Wilkinson, D, Albertsen, MC

In 1987, Dan Wilkinson observed male-sterile plants in a Uq cruq/Ht1 F2 line that he was growing in Johnston, IA. Dan sib-pollinated the male-sterile plants and gave the seed to us. We planted this seed in our 1988 Johnston summer nursery where the male-sterile plants were again sib-pollinated. We designated this male-sterile as ms^* -DR87A. Segregation data for the 1988 nursery are shown:

Genotype	Fertiles	Steriles	X2(1:1)
Uq Sib #1	12 Fertiles	12 Steriles	0.00
Ug Sib #2	13 Fertiles	18 Steriles	0.81
Ug Sib #3	10 Fertiles	10 Steriles	0.00
Original F2 Line	13 Fertiles	4 Steriles	0.01 (corrected X2)(3:1)

In 1992 we test-crossed ms^* -DR87A with a Uq tester line (receptor @ c1;c-ruq wx). We scored the ears from this testcross for Uq co-segregation with sterility but did not find consistant co-segregation. While scoring these ears we noticed that there was an unusual number of silks on the male-sterile plants, as well as glume-like structures attached on either side of the kernels. Sometimes these structures are separated from the kernels during the shelling process (using a mechanical sheller), but most of the time they remain joined to the kernel on either side.

During the summer of 1995 in Johnston, we grew the sib-pollinated seed from the 1988 nursery. At that time, male-sterile plants were crossed with A632. The F1 seed was grown in the summer of 1995 and self-pollinated to make F2 ears. The F2 ears were then planted in the 1995 Hawaii winter nursery; their segregation data are shown:

Genotype	Fertiles	Steriles	Corrected X2(3:1)
A632 Ear #1	10 Fertiles	7 Steriles	1.59
A632 Ear #2	11 Fertiles	6 Steriles	0.50

In the Hawaii 1997 winter nursery, ms*-DR87A was planted for chromosome arm mapping. Leaf punches from 24 male-fertile and 15 male-sterile plants were taken for DNA isolations. Roughly 60 SSR markers were used to genotype DNA pools of the malefertile samples and individual male-sterile samples. Four SSR markers on chromosome 3 (*bnlg1035, bnlg1452, phi029, phi053*) showed linkage with the male-sterility phenotype. SSR marker *bnlg1035* (chromosome 3 Bin 5) gave the closest linkage to the trait with only 2 recombinant alleles found in the male-sterile samples.

Test-crosses were made with ms^* -DR87A and the known male-sterile mutants located on chromosome 3 (ms3, ms23, ms37) as well as with the unmapped male-sterile mutants (ms24 and ms27). At least 40 plants were observed for each test-cross, and all test-cross progeny were found to be fertile. We also had test-crossed ms^* -DR87A with si1 before we had map data and found that it was not allelic. The si1 mutant is described as having irregular kernel placement, but there is no description of glume-like structures attached to the kernel. The ms- si^* -355 allele listed in the back of last year's MGN is without description.

Other than the si1-mssi allele, none of the other si-type mutants identified by Neuffer are described specifically as also being male sterile. This includes si^* -1323 (or si^* -N1323) that is mapped to chromosome 3S and that is described as "a selfed colorless flinty semi-sterile ear segregating for tiny defective kernels with excess silks" (MaizeDB). Its male fertility is not addressed. Silky mutant si^* -1967(or si^* -N1967) is not mapped but is described as being male fertile (MaizeDB). Silky mutant si^* -N815A, also unmapped, is described as having silks on tassels and ears (MaizeDB).

None of the previously described silky-type mutants have all the features of *ms*-DR87A*. Homozygous mutant plants are 1) distinctly male sterile, 2) have glume-like structures attached on either side of the kernel, and 3) have excess silks on the ears. Because of the silky phenotype of this male-sterile, our designation for this mapped mutant is *mssi*-DR87A*.

New ra1 allele

--Trimnell, MR, Albertsen, MC

In 1997 in our Johnston nursery, we observed ramosa-like tassels in a segregating row of the *ms26* male-sterile mutant. The ears of these plants also exhibited a ramosa-like phenotype. We designated this mutant as *ra*-ms26*. We carried pollen from the ramosa-like plants and crossed them onto A632. These plants were then grown in our Hawaii winter nursery and self-pollinated.

We grew the F2 ears in our 1998 Johnston nursery. Segregation data are shown below (please note that the low plant numbers are due to a mesocyclone that occurred in Johnston during late June):

Genotype	Wild-type	ramosa	Corrected X2(3:1)
A632/ra*-ms26 Selfed Ear #1(F2)	5 Plants	2 Plants	0.05
A632/ra*-ms26 Selfed Ear #2(F2)	3 Plants	0 Plants	••
A632/ra*-ms26 Selfed Ear #4(F2)	7 Plants	2 Plants	0.04
A632/ra*-ms26 Selfed Ear #5(F2)	5 Plants	4 Plants	0.92

MCA commented during the 1997 nursery that *ra*-ms26* looked like a *ra1* mutant. Since we did not have any *ra1* planted during that nursery, we made the test-cross in our 1998 Johnston nursery using our *ra1-DEN* allele. Homozygous *ra*-ms26* plants were crossed with homozygous *ra1-DEN* plants. The resultant progenies were grown in Hawaii in our 1998 winter nursery and gave the following results, indicating allelism:

Female	Male	Progeny		
ra*-ms26 Homozygote	ra1-DEN Homozygole	0 Wild-type	31 ramosa	
ra*-ms26 Homozygote	ra1-DEN Homozydote	0 Wild-type	38 ramosa	

Our new designation for this ra1 allele is ra1-ms26.

JOHNSTON, IOWA Pioneer Hi-Bred Int., Inc. URBANA, ILLINOIS University of Illinois

New male-sterile allele of the male-fertility gene Ms45

--Trimnell, MR, Fox, TW, Patterson, E, Albertsen, MC

A new male-sterile allele of *Ms45* has been identified from a series of male-sterile mutants received several years ago from the late Dr. Earl Patterson of the University of Illinois. Earl had designated this mutant as ms^* -6040 (see MNL 69:126-128). In the 1980's, Earl and we started allelism studies by making some of the test-crosses of ms^* -6040 to the known male-sterile alleles located on chromosome 9 (*ms2*), as well as to unmapped male-sterile alleles that were later found to be located on chromosome 9 (*ms25-6022*, previously ms^* -6022; and *ms35*, previously ms^* -6011). Progenies from these test-crosses were fertile, indicating the mutants were not allelic.

To reduce the number of subsequent allelism crosses required, we planted an F2 segregating family of *ms*-6040* in our 1998 Johnston nursery to take leaf samples for chromosome arm mapping. Samples from 24 plants of each phenotypic class were taken for DNA isolation. Approximately 60 SSR markers were used to genotype this line. Linkage of the SSR marker *bnlg619* (chromosome 9, Bin 7 or 8) was found with the male-sterility phenotype.

We then test-crossed ms^*-6040 with the remaining malesterile alleles on chromosome 9 (ms36, $ms45^{\circ}-9301$) as well as with the unmapped male-sterile alleles (ms24, ms27). At least 40 progeny plants were observed of these test-crosses. The testcrosses of ms36 and the unmapped mutants were all fertile, indicating ms^*-6040 was not allelic to any of them. The reciprocal test-crosses of ms^*-6040 with $ms45^{\circ}-9301$ gave the following results, indicating allelism:

Female (homogygous)	Male (heterozygous)	Pro	X2(1:1)		
ms*-6040	ms45`-9301	17 Fertiles	15 Steriles	0.13	
ms45`-9301	ms*-6040	13 Fertiles	21 Steriles	1.88	

Our new designation for this Ms45 allele is ms45-6040.

New male-sterile allele of the male fertility gene Ms30

--Trimnell, MR, Fox, TW, Patterson, E, Albertsen, MC

A new male-sterile allele of *Ms30* has been identified from a series of male-sterile mutants received several years ago from the late Dr. Earl Patterson of the University of Illinois. This mutant had been designated as *ms*-6028* (see MNL 69:126-128).

To reduce the number of test-crosses required to determine allelism, we planted an F2 segregating family of *ms*-6028* in our 1998 Johnston nursery for chromosome arm mapping. Leaf punches were taken from 23 male-sterile plants and 24 male-fertile plants for DNA isolation. Approximately 60 SSR markers, evenly dispersed throughout the genome, were used to genotype these samples. Linkage was found between the SSR marker *phi093* (chromosome 4, Bin 8) and the male-sterile phenotype.

After receiving the mapping data, we test-crossed ms^*-6028 with the recessive male-sterile alleles that are located on chromosome 4 (ms30), as well as the unmapped recessive male-sterile alleles (ms24, ms27). The resultant progeny were grown in our 1999 Johnston nursery. At least 40 plants were observed for each of the test-crosses. The test-crosses with the unmapped male-sterile mutants were all fertile, indicating ms^*-6028 was not allelic to either mutant. The reciprocal test-crosses of ms^*-6028 with ms30 gave the following results, indicating allelism:

Female (homozygous)	Male (heterozygous)	Pro	X2(1:1)		
ms*-6028	ms30	10 Fertiles	16 Steriles	1.38	
ms30	ms*-6028	19 Fertiles	22 Steriles	0.22	

Our new designation for this Ms30 allele is ms30-6028.

JUIZ DE FORA-MG, BRAZIL Universidade Federal de Juiz de Fora VICOSA-MG, BRAZIL Universidade Federal de Vicosa

Image analysis as a tool for chromosome deficiency identification in maize

--Viccini, LF, de Carvalho, CR

Seeds originating from irradiated pollen (maize test-line L-869 of Federal University of Viçosa) were germinated in Petri dishes with a film of distilled water in the dark at 28-29 C. Root tips ranging from 0.5 to 1.0 cm in length were pre-treated with 0.02% colchicine solution for 2h30min. Slides were prepared by the air drying technique with enzymatic maceration.

Image analysis was performed on Macintosh computer using the public domain NHI-Image SXM 1.61 software (Rasband, 1997). Chromosome images were captured by a video camera coupled to the microscope-computer system so as to generate 256 gray value density profile plots.

Chromosome measurements were obtained by the difference of chromosomal area density and that of the background, with the selection tool of the software (profile plot line-width 12) being used. The plot pixel value of relative density was calibrated to the range of 0 (white) to 255 (black). The background picture was set to 0 gray value and the chromosome length spatial was perfomed in micrometers (Carvalho and Saraiva, 1997).

Five metaphases presenting deficiency in chromosome 6 were randomly chosen for analysis (Figure 1). When comparing the chromosome-6 arm length average values, it is observed that the measure of both short arms is about the same, while the long arm difference is 0.67 μ m, corresponding approximately to 26% the size of a normal long arm (Table 1).

Figure 1. Five pairs of chromosome 6 in root tips of germinaling seeds derived from γ-irradiated pollen grains (72 Gy). The chromosomes (left) present a deficiency in the long arm. Bar=5 µm.

Table 1. Measurements (um) of deficient and normal chromosome 6 originated from five metaphases.

	Chromosome 6							
		Deficien	t		Normal			
		Arm			Arm			
	Short*	Long	Length	Short*	Long	Length		
	1.35	1.88	3.23	1.42	2.78	4.20		
	1.53	1.87	3.40	1.59	2.44	4.03		
	1.65	1.93	3.58	1.59	2.44	4.03		
	1.63	1.99	3.62	1.65	2.73	4.38		
	1,59	1.92	3.51	1.48	2.56	4.04		
Average	1.55	1.92	3.47	1.55	2.59	4.14		
* satellite o	out							

S

Normal and deficiency chromosome graphs were overlapped to evidence the alteration (Figure 2). The overlapping of the density graphics of each chromosome of the first homologue pair repre

Figure 2. Graph showing density overlap of chromosome 6 pairs. The dark gray area corresponds to gray value of the normal chromosome and the clear gray area of the deficient chromosome.

sented in Figure 1 shows a 0.90 µm chromosome II deficiency. Thus, making it possible to evaluate deficiency length, by considering the difference between chromosome density and that of the background.

It is verified that the image analysis by means of computational resources is a useful tool in studies of this nature.

LAWRENCEVILLE, NEW JERSEY **Rider University**

Identification of two cDNAs encoding methylenetetrahydrofolate reductase

--Khan, F, Kite, M, Benner, M

Synthesis of methionine in higher plants involves the net interaction of three processes: 1) formation of an aspartate-derived, four-carbon chain, 2) transfer of a sulfur atom derived from cysteine, and 3) addition of a methyl group donated by 5-methyltetrahydrofolate. Although the enzymes required for these three processes have been identified, the genes encoding them are largely uncharacterized in higher plants. The methyl donor 5methyltetrahydrofolate is synthesized from 5,10-methylenetetrahydrofolate by the enzyme methylenetetrahydrofolate reductase (MTHFR); this enzyme is critical for the maintenance of an adequate methionine pool in both eukaryotes and prokaryotes. The mammalian genes have been shown to encode two domains - a catalytic domain which binds the substrate and a regulatory domain which contains an allosteric site for S-adenosylmethionine binding (Goyette et al., Nature Genetics 7:195-200). We wish to investigate the role of the regulatory domain in higher plants.

BLAST searches were performed to identify plant ESTs that showed significant homology with previously identified MTHFR sequences. Alignment of the ESTs and comparison with the human cDNA facilitated the design of a degenerate oligonucleotide primer that anneals near the 5' end of the maize MTHFR cDNA and includes the start codon. A primer sequence for the 3' end of the cDNA was designed from a maize EST which contains the putative stop codon. RNA was extracted from maize leaf tissue obtained from two-week old seedlings of W64A using the Qiagen RNeasy protocol. cDNA was prepared with the Qiagen Omniscript RT system. MTHFR cDNA was amplified via 35 cycles of 95 C (30 sec), 50 C (30 sec), and 72 C (2 min). The purified PCR products were ligated into the Stratagene PCR-Script Amp cloning vector. Ligation products were used to transform E. coli strain DH5a; clones were independently sequenced at Rider University and Princeton University.

As predicted, utilization of the above primers in PCR reactions containing maize cDNA resulted in the amplification of a single fragment of approximately 1.8 kb. Sequence analyses indicate that we have isolated two members of the MTHFR gene family in maize. One of our clones is identical to a recently submitted sequence (Roje et al., J. Biol. Chem. 274: 36089-36096), while the other is unreported. Presence of more than one locus has been suggested by Roje et al.; in addition, the RFLP marker csu134 has been show to be homologous to MTHFR sequences and hybridizes to two thf loci, one mapped to chromosome 1 (csu134a) and one mapped to chromosome 5 (csu134b) (Chao et al., Theor Appl Genet 88:717-721). We hypothesize that one of our clones represents the chromosome 1 locus, while the other represents the chromosome 5 locus. To date, we have ascertained that the unreported cDNA sequence differs with respect to at least three nucleotides. Two of these differences presumably result in divergence at the amino acid level as well (T59A; L132F). In addition, one of the polymorphisms alters a restriction site, giving us a gene-specific difference that will facilitate the confirmation of map location.

LLAVALLOL, ARGENTINA Instituto Fitotecnico Santa Catalina (FCAyF, UNLP)

CIGEN (UNLP, CONICET, CIC)

Electrophoretic studies on maize endosperm proteins: modifications to Laemmli's SDS-Page technique

--Corcuera¹, VR, Bernatene², E, Naranjo³, CA 1. Technician of CIC 2. Technician of CONICET 3. Researcher of CONICET

Laemmli's SDS polyacrylamide gel electrophoresis is based on conditions that assure protein dissociation into their individual polypeptides, minimizing the risk of their aggregation. Electrophoresis is then run, in a discontinuous buffer system using a running buffer with a different pH than the one used to prepare the stacking and resolving gels. These systems were originally developed by Ornstein (1964) and Davis (1964). In our laboratory, electrophoretic studies on maize endosperm proteins were carried out using a Hoeffer Vertical Slab Unit SE 600 and a power source Hoeffer Mighty Slim SX 250. The modifications suggested to the original Laemmli's technique are listed below:

A. Maize endosperms have to be milled to 100 mesh and the flours defatted with n-hexane using a ratio 1:10 (sample:solvent) at 4 C and stirring during one hour.

B. Several sample:buffer ratios were tested. The ratios examined were 40 mg flour:1000 uL buffer, 70:1000 and 100:1000.

C. Proteins were extracted from meal for 2, 6, 12 and 24 hours at room temperature using SDS-extraction buffer prepared as follows: 18.0 ml water + 7.65 ml 3x buffer + 1.35 ml 2-ME. The 3x buffer contained: 6.25 ml Tris HCl (ph: 6.8) + 12.05 ml tap water + 2.0 g SDS + 10.0 mg gamma pironine + 10.0 ml glycerol. During the extraction time, the samples were vortexed periodically.

D. Protein extracts were heated in boiling water for 10 minutes with later cooling under water flow up to room temperature.

E. The extracts were clarified by centrifugation for 10, 12 or 15 minutes at 12,500 - 13,000 and 14,000 x G.

F. 10 and 12% gels were used, so different monomer concentrations (%T) were analyzed.

G. 50 uL of each extract were loaded onto each lane of the gels. Electrophoresis was run at constant current and variable voltage (20 to 35 ampere/gel).

H. Bands were fixed using a mixture containing 440 ml tap water + 35 ml acetic acid + 25 ml methanol during 3 hours using a shaker. Later on, gel staining was done using a mixture of 500 mg Coomasie Blue R + 250 ml methanol + 200 ml tap water + 50 ml acetic acid during 3 hours using a shaker. Finally, gel decolouring was done employing a mixture of 335 ml tap water + 40 ml acetic acid +125 ml ethanol during 3 to 4 hours using a shaker and with constant changes of the mixture. Between each step, the gels were washed three times with deionized water.

After testing all the modifications listed above, it can be said that for maize endosperm proteins, the best electrophoretic results are obtained using the following procedures:

1. Better results are obtained using fine milling and defatted endosperm flours.

2. The best sample:buffer ratio was 70:1000. When 100:1000 ratio was used, the bands heaped upon themselves producing spots and changing the electrophoretic pattern.

The best extracts were obtained after 24 hours extraction, shaking 4 times in a vortex 40 minutes each within the period. 4. Better results are obtained using 12% gels, as they give better definition of the bands. 10% gels are not suitable as some bands do not appear and others join amongst themselves looking like spots or single bands.

5. Better results are also obtained centrifugating 15 minutes at $14,000 \times G$ to clarify the extracts.

The maize samples used belong to different types of endosperm: flint, opaque-2 and waxy. When SDS-PAGE was run according to the above procedures, 19 bands could be observed. The electrophoretic pattern varied with the maize type. Flint maizes present all the bands except band thirteen. Bands 1,2,3,5,6 and 18 are absent in waxy and opaque-2 materials. On the other hand, band 16 is absent in opaque-2 maizes and band 14 was not observed in waxy maizes. It can be said that polypeptide electrophoretic pattern is suitable to differentiate amongst groups of maize with different endosperm natures, though it does not allow distinguishing phenotypes within the group. For this purpose, protein fractionation must be done.

> LOMAS DE ZAMORA, BUENOS AIRES, ARGENTINA Universidad Nacional de Lomas de Zamora LLAVALLOL, BUENOS AIRES, ARGENTINA Universidad Nacional de La Plata RÍO CUARTO, CÓRDOBA, ARGENTINA Universidad Nacional de Río Cuarto.

Genetic variation in the progeny of maize/Tripsacum hybrids. --García, MD, Bonamico, N, Di Renzo, MA, Molina, MdelC

According to Burson et al. (Crop Sci. 30:86-89, 1990), the form of apomixis in polyploid *Tripsacum* species is diplosporous pseudogamy of the *Antennaria* type, with complete absence of meiosis, which produces progeny genetically identical to the female parent. Nevertheless, Leblanc et al. (Theor. Appl. Genet. 90:1198-1203, 1995) observed the formation of meiotic dyads and tetrads amongst the diplosporic accessions of this genus. Kindiger and Dewald (Crop Sci. 36:250-255, 1996) evaluated the progeny of tetraploid *T. dactyloides* by cytogenetic and molecular (RAPD-PCR) analysis and observed complete absence of sexual development and genetic variation in the progeny. They suggested that an incomplete sexual process could originate this variation. The objective of this work has been to determine the form of re-

production of the hybrid between maize and *Tripsacum* by means of cytogenetic and molecular analysis of its progeny.

Maize inbred 407B (2n=40) was pollinated with T. dactyloides (2n=72). Hybrid embryos (ZT56) were isolated and cultured on the basic medium (MD García et al., Rev. de la Fac. de Agron. de la UNLP 68:15-25, 1992) supplemented with 4 µmol L⁻¹ 2.4-Dichlorophenoxyacetic acid (2,4-D). Shoots were regenerated by somatic embryogenesis or organogenesis and rooted on the same basic medium without 2,4-D. Progeny was obtained by free pollination with Zea mays ssp. mays (2n = 20 or 40), Z. perennis (2n = 40) and Z. diploperennis (2n = 20). Seeds from ZT56 plants were germinated in sand and 8 days later coleoptiles have been cut off and soaked in 50 µl of extraction buffer L-ascorbic, tris-CIH 0,2 M, pH 7. The protein extract was absorbed on Whatman paper N°3 and separation was performed by horizontal starch gel electrophoresis technique. Enzymes analysed were glutamic-oxalacetic transaminase (GOT), endopeptidase (ENP), esterase (EST), alcohol dehydrogenase

	MDH							ACP				ADH				
	B1	B2	B3	B4	B5	B6	B7	B1	B2	B3	B4	B5	B6	B1	B2	B3
ť.	•2	+	+	+	+	+	+	+	+	+		+	+	+	+	+
2	+	+	+	+	+	+	+	+	+	+	1	+	+	-	+	+
3	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+
4	1.0	+	+	+	+	+	+	+		+				+	+	+
i	. k.	+	+	+	+	+	+	+	+	+	4	+	+		+	+
5	15	+	+	+	+	+	+	÷	+	+	+	+	+	*	+	+
1	1.	+	+	+	+	+	+	+	+	+	1.54	+	+		+	+

Table. Isozyme profile from seedlings of ZT56 hybrid progeny. Polymorphism can be observed in MDH (band 1), ACP (band 4) and ADH (band 1).

(ADH), malate dehydrogenase (MDH) and acid phosphatase (ACP). The corresponding band pattern was settled for each sample constituted by a single seed taken from the same plant. According to the criteria of absence (-) or presence (+), the bands were enumerated from the anode to the cathode, B1 being the faster band.

Pollen of regenerated ZT56 plants was completely sterile, so some seeds were obtained from free pollination with maize, *Z. perennis* and *Z. diploperennis*. Every progeny plant revealed a chromosome number 2n=56, like the mother plant; consequently, the occurrence of a sexual process could be discarded. But, on the other hand, the molecular analysis showed variations within the progeny. GOT, ENP and EST enzymes showed monomorphism, whilst polymorphism was observed in MDH, ACP and ADH (Table). These results are similar to those published by Kindiger and Dewald (Crop Sci. 36:250-255, 1996) in tetraploid *T. dactyloides*. In the same way, the maize/*T. dactyloides* hybrid showed absence of sexual development, but the apomictic mechanism was able to generate genetic changes in the progeny.

LOMAS DE ZAMORA, BUENOS AIRES, ARGENTINA Universidad Nacional de Lomas de Zamora LLAVALLOL, BUENOS AIRES, ARGENTINA Universidad Nacional de La Plata

Genotype and embryo age affect plant regeneration from maize/Tripsacum hybrids

--García, MD, Molina, MdelC, Pesqueira, J

à.

The objective of this work was to evaluate the effects of genotype, embryo age and 2,4-Dichlorophenoxyacetic acid (2,4-D) concentrations on the induction of somatic embryogenesis and plant regeneration from maize/*Tripsacum* hybrids. Plant materials used for this experiment were *Zea mays ssp. mays* (2n=20): i) Inbred A188, from Dr. Phillips; ii) Inbred Santa Catalina 75 (SC75); iii) Cultivar Colorado Klein (CK) and *Tripsacum dactyloides* (2n=72), from Dr. Bird (CIMMYT). The hybrids obtained were i) Inbred A188 x *T.dactyloides* (A188xT); ii) Inbred SC75 x *T. dactyloides* (SC75 x T); iii) Cultivar Colorado Klein x *T. dactyloides* (CKxT); iv) Cultivar SCD x *T. dactyloides* (SCD x T).

Mother plants were grown in the greenhouse during 1998 spring and summer and crossings were practised during December. Maize ears were kept covered with paper bags until silk emergence. Silks were cut immediately before hand pollination with *Tripsacum* pollen and then ears were covered again with paper bags to prevent foreign pollen contamination. Ears were harvested 13, 15 or 19 days after pollination (dap). Developed caryopses were cut off and disinfected with 2,5% sodium hypochlorite solution. Embryos were isolated from the caryopsis, plated on culture media and incubated at 28-30 C with a 16 hour photoperiod. Culture media were composed of García et al. (Rev de la Fac de Agron de la UNLP 68:15-25) basic medium free of plant growth regulators (G0) or with the addition of different 2,4-D concentrations (µmol.L-1): 2.3 (G2) or 4.6 (G4). Calli were maintained on G4 medium and subcultured monthly. Shoots, obtained on the initiation media, were rooted on G0 medium under the same conditions of temperature and photoperiod. Regenerated plants were transplanted to pots with a plastic cover and three weeks later they were moved to the greenhouse. All the crossings performed gave rise to ears with developed caryopses only in the upper third. Caryopses were turgid with translucent endosperm until 15 dap. Embryo length ranged from 0.3 to 0.5 mm. Caryopses collapsed 19 dap because of endosperm development abnormalities, and by this time embryo length was very heterogeneous, from 0.5 to 2 mm. Only CKxT embryos showed a more uniform size, 1.5 to 2 mm.

Embryos plated on G0 medium germinated precociously (Table 1), but gave rise to weak plants without adventitious roots, which died during the rustication period.

Embryos grown on G4 medium showed low germination percentages but somatic embryogenesis was observed from all the hybrids (Table 2). Although frequencies of organogenic or embryogenic calli did not vary considerably amongst genotypes, the average of plants regenerated per responsive embryo during the culture period (8 months) was very different: 12.5 in A188xT, 2.5 in SC75xT, 2 in CKxT and 0.67 in SCDxT (Table 2).

On G2 medium, germination percentage has also been low and

Table 1: Germination frequencies of Maize/ *Tripsacum* hybrid embryos isolated 13 dap and cultured on G0 medium. Observations were made 2 months after embryo plating.

Genotype	Number of embryos	Germination (%)
A188xT	21	52.4
SCDxT	24	79.2

Germination frequencies did not show significant differences among genotypes ($\chi^2 = 3.62$; P \leq 0.001).

Table 2: Somatic embryogenesis or organogenesis frequencies observed in maize/*Tripsacum* hybrid embryos isolated 13 or 15 dap and cultured on G4 medium. Observations were made 2 and 8 months after embryo plating.

Genotype	Organoger embryogen	nesis or somatic esis frequency	Number of plants	Number of embryos		
	2 mos ¹	8 mos ²	2 mos	8 mos		
A188xT	25.00	11.11	9	50	36	
SC75xT	21.87	12.50	4	10	32	
CKxT	6.25	6.25	0	2	16	
SCDxT	13.64	13.64	4	2	22	

Embryogenesis frequencies between genotypes do not differ significantly: ${}^{1}\chi^{2}$ = 3.13; P=0.001; ${}^{2}\chi^{2}$ = 1.38; P=0.001.

somatic embryogenesis frequencies were 16.6% for A188xT and 20.83% for SCDxT. These values did not differ significantly from those observed in G4 medium ($\chi^2 = 0.005$; P≤ 0.001).

Embryo age notoriously affected somatic embryogenesis frequencies. On G4 medium SC75xT embryos isolated 15 dap showed an induction frequency of 21.87% and 6.15% for those isolated 19 dap ($\chi^2 = 5.27$; P \leq 0.001). No plants were regenerated from calli obtained from embryos isolated 19 dap. All regenerated plants showed a chromosome number 2n= 46.

In conclusion: Hybrid maize/*Tripsacum* embryos isolated 13 days after pollination and cultured on plant growth regulator free medium germinated but gave rise to weak plants that didn't survive. On the other hand, those embryos plated on medium supplemented with 4.6 µmol.L⁻¹ 2,4-D originated, by somatic embryogenesis and organogenesis, an average up to 12.5 vigorous

plants/embryo. The frequency of regenerated plants, of each genotype, was affected mainly by the callus regeneration ability more than the induction frequency of somatic embryogenesis.

Only the embryos less than 1 mm length (isolated 13 to 15 dap) originated calli able to regenerate plants by organogenesis or so-matic embryogenesis.

Meiotic pairing in the interspecific hybrid Zea mays, Zea perennis and Zea diploperennis

--Molina, MdelC, García, MD

In this work the following features were analyzed: i) phenotypic and cytogenetic traits as well as fertility and genomic formulae of an hybrid amongst *Zea mays, Zea perennis* and *Zea diploperennis* and, ii) the effect of colchicine on the chromosome pairing of the hybrid and parental species.

The plant materials used for these studies were: maize inbreds 2n=40 (Zm40) supplied by the Maize Genetic Coop. Stock Center, Urbana, Illinois, USA, the hybrids DP40 (2n=40) obtained from crossing a non reduced gamete of *Zea diploperennis* (Zd), 2n=20, by *Zea perennis* (Zp), 2n=40, and MDP 2n=40 obtained by crossing Zm40×DP40. Zm40 is annual, 1.8 to 2.0 m height, with one or two fertile ears and indifferent to photoperiod. The hybrid DP40 is perennial, tillering, fertile (80%), seeds scatter at maturity and according to its flowering response it is a qualitative short photoperiod plant with a 13 h critical photoperiod. The hybrid MDP is annual, 2.0 to 2.5 m height, without tillers or at most only one or two. It is prolific, fertile seeds are disposed in 4 to 8 rowed distich ears which do not scatter at maturity and flowering results indifferent to photoperiod.

From the cytogenetic study of the hybrids (Table 1) and their parents it can be deduced:

Zm40 revealed 10iv (30%) and 9iv+2ii (23.94%) with an average of 8.34iv+3.24ii and 33.75 chiasma/cell. According to these results and considering the basic chromosome number for the genus *Zea* as x=5, the following genomic formula can be proposed for Zm40: AmAmAmAm BmBmBmBm.

Zd presents regular meiosis and 10 bivalents could be observed in 73% of the cells studied. The existence of 1iii+8ii+1i or 1iii+7ii+3i in 4% of the cells would point to some homoeologies between A and B genomes and also suggests a probable segmental allotetraploid. The genomic formula proposed for Zd is AdAd BdBd.

Zp has 5iv+10ii (54.47%) and 4iv+12ii (20,15%) with an av-

erage of 4.44iv+11.02ii and 34.56 chiasma/cell (15.69 in bivalents and 18.87 in tetravalents). The most frequent chromosomic pairing found in Zp suggests for this species the genomic formula ApApApAp Bp₁Bp₁ Bp₂Bp₂.

The hybrid **DP40** has a low percentage of univalents and trivalents, most of its chromosomes being paired as open ring bivalents and tetravalents, with an average of 31.42 chiasma per cell (15.96 in bivalents and 15.30 in tetravalents). The hybrid DP40 and Zp are very similar in their meiotic configurations as well as in the average of i, ii, iii and iv. According to these results the genomic formula ApApAdAd Bp₁Bp₂ BdBd is proposed.

In **MDP** (Table 2) chromosome pairing is regular forming bi or tetravalents but mono or trivalents were not found. In 43.93 % of the cells 10ii + 5iv pair, in 12.87 % 8ii + 6iv and in 12.87 % of cells 12ii + 4iv. The average number of chiasma/cell is 31.34 (10.24ii + 21.10iv). During anaphase an equal number of chromosomes migrate to each pole and inversion bridges can exceptionally be observed. Pollen fertility ranges from 83% to 95% and seed viability is 90%. The proposed genomic formula is AmAmApAd BmBm BdBp.

Zm40, Zp, DP40 and MDP were treated with diluted solutions of colchicine (0.5×10^{-4} M) to analyze chromosome homologies and pairing amongst homoeologous genomes. From the results in Table 3, it can be deduced: a) colchicine does not increase significantly the number of quadrivalents in Zm40, b) in Zp, DP40 and MDP the number of iv results in greatly increased pairing amongst homoeologous chromosomes of genome B, c) homoeologous genomes A pair in all cases, but genomes B only do if there is no other homologous competition during pairing.

Table 1. Meiotic configurations of the species a	and hybrid	ds
--	------------	----

Genotype	2n		Meiotic co	nfiguration	s	Chiasmata/ cell	No of PMCs examined
		1	i	ii.	iv		
Zd	20	0.27 (0-2)	9.73 (8-10)	-	4	14	100
Zp	40	0.16 (0-4)	11.06 (8-18)	0.01 (0-1)	4,44 (1-6)	34.79	134
DP40	40	0.24 (0-4)	11.29 (6-18)	0.06 (0-1)	4.20 (1-7)	31.42	214
Zm40	40	0.04 (0-1)	3.24 (0-10)	0.04 (0-1)	8.34 (3-10)	33.25	142
MDP	40	0.04 (0-2)	10.90 (4-20)	0.01 (0-1)	4.50 (0-7)	31.34	132

Table 2. Meiotic configurations of the hybrid MDP (2n = 40)

Dia	kinesis metaph	ase configur	ations		
i	i	Ĩ	İv	%	No of cells studied
	4		8	0.76	132
	6		7	4.54	
	8		6	12.87	
	10		5	43.93	
	12		4	12.87	
	14		3	11.36	
	16		2	3.03	
	18		1	6.06	
	20		0	0.76	
2	9		5	1.52	
2	15		2	0.76	
1	10	1	4	0.76	
1	14	1	2	0.76	
Average					
0.04	10.90	0.01	4.50		

Genotype	2n					Ν	lumber of qua	drivalent (%)					No of PMCs Exam.
and an and a second		0	1	2	3	4	5	6	7	8	9	10	
Zp	40		2.24	4.48	7.47	23.88	56.71	5.22					134
Zp (T)	40	24		1.36	4.08	12.24	21.76	27.21	22,44	8.16	2.04	0.68	147
Zm40	40				1.40	0.70	4.93	8.45	10.52	18.30	25.34	30.28	142
Zm40 (T)	40				1.	0.65	2.35	3.00	7.00	17.00	29.00	41.00	152
DP40	40		2.33	4.20	19.62	27.57	34.11	11.22	0.93				214
DP40 (T)	40			1.47	5.88	7.35	30.88	25.73	16.17	8.86	2.20	1.47	136
MDP	40	0.76	6.06	4.55	11.36	12.87	45.43	12.87	4.54	0.76			129
MDP (T)	40		*	1.43	5.71	7.14	32.14	28.57	12.14	6.42	3.57	2.85	140

Table 3. Number of iv/cell in colchicine (0.5 x 10⁻⁴M) treated (T) and control plants of Zp; Zm40; DP40 and MDP.

LOMAS DE ZAMORA, BUENOS AIRES, ARGENTINA Universidad Nacional de Lomas de Zamora

Association between yield components, grain morphological traits and volume expansion in popcorn hybrids cultivated in Argentina --Broccoli, AM, Burak, R

Improvement in quality generally is considered the most important objective of popcorn breeding programs. Expansion volume, defined as the volume of popped corn per gram of unpopped corn, is the quality trait of greatest importance. High expansion volume is associated with increased kernel tenderness (Brunson, 1937). Also, from a commercial standpoint, popcorn genotypes with high expansion volumes will produce more popped corn than genotypes with low expansion volumes.

Compared to dent corn, popcorn kernels contain a high proportion of translucent (hard endosperm) relative to opaque (soft) endosperm. Starch contained in translucent endosperm expands upon heating, while starch contained in opaque endosperm remains relatively unchanged. (Hoseney et al, 1983). Willer and Brunson (1927) concluded that, of all kernel characteristics studied, the proportion of translucent endosperm was most highly correlated with expansion volume.

Popping expansion is a heritable character and the variability of individual ears within an open pollinated variety is similar to other cases of quantitative inheritance controlled by many genes. Significant correlations have been determined between popping expansion and size of kernel and proportion of soft starch, which are quantitatively inherited characters too.

Breeders could achieve popcorn desirable characters including all of the attributes of a good cultivar of flint or dent corn and must include high expansion volume and tenderness. Both characters seem to be closely correlated. The absence of a coarse hull and the presence of good flavor are also desirable.

Because of negative correlation between top yields and superior popping expansion it is difficult to combine both characters in the same genotype. So, some compromise must be made in either yield or popping expansion or both to secure the best results from the utility standpoint.

A smaller inbred depression occurs in popcorn when compared with dent corn. This possibility of finding comparative"per se" productive inbreds makes easy the simple hybrid seed utilization, largely in commercial production. This simplifies the seed production problems and makes possible a most uniform market product.

In Argentina, the traditional popcorns were open-pollinated varieties obtained from a wide range of genetic variability contained in native races. With the advent of the MERCOSUR (global market of South America) the interest in this crop and the cultivated area increases substantially year by year, but the absence of locally achieved hybrids makes the commercial breeders import these genotypes principally from the USA.

Field trials at six enviroments of fourteen commercially available hybrids were carried out in order to evaluate yield components, popping expansion and genotype by enviroment interaction. To determine the relationships between some kernel characteristics and popping expansion (PE), kernel length (KL), width (KW), thickness (KTH),density of expanded (KED) and not expanded ones (KNED), were determined on a sample taken from the middle sector of the ear. Length (EL) and diameter (ED) of each one was measured. Yield (kg/ha) and prolificacy are positively correlated.

The correlation coefficients of popping expansion with these characters are presented in Table 1.

Table 1. Phenotypic correlations between the investigated traits. (*, **) Significant at the 0.05 and 0.01 probability, respectively.

	PE	YIELD	KTH	KW	KL	ED	EL	KED	KNED
YIELD	•	•		-	*		•	•	-
KTH	0.46	-0.11			•	5		1	
KW	0.09	0.02	0.32		-	-	-	-	•
KL	-0.18	0.52	-0.03	0.18		-		5	
ED	-0.15	0.51	-0.01	-0.02	0.57	•	(#) 	*	×
EL	-0.01	0.55	0.23	0.17	0.37	0.48	*	10	3
KED	0.02	0.21	-0.08	-0.09	0.12	0.19	0.21	•	•
KNED	-0.98	• 0.15	-0.46	-0.11	0.19	0.16	0.01	-0.014	+
PI	0.03	0.32	0.19	• 0.17	0.11	0.011	•• 0.28	0.004	-0.04

As expected, high positive correlation coefficients of yield with components like KL and KDI exist. PI was also strongly associated because of some hybrids' tendency to produce two ears of uniform type. In agreement with current bibliography, yield components have a negative association with popping expansion, so it is difficult for the breeders to achieve hybrids with both characters simultaneusly.

Analyzing kernel morphological traits, there appears to be some definite association with PE and kernel size and shape. A high positive correlation ($r = 0.46^{**}$) was verified with KTH and a negative one with KL ($r = -0.18^{**}$).

Measuring densities of kernels, initial or without expanding

KED has no correlation with KNED, but final density of the expanded kernels KNED has a strong association (r =0.93**) and would be an effective selection criterion.

These data are in agreement with basic information, even though the hybrids evaluated may be related because of the common origin of some of them, and certainly there is a restricted genetic base that includes some of the best American lines previously evaluated in many Argentine environments.

Genotype by environment interaction on popping expansion and yield in popcorn hybrids cultivated in Argentina

--Burak, R, Broccoli, AM

The open-pollinated popcorn varieties traditionally cultivated in Argentina were replaced, during the last years, by introducing popcorn hybrids principally from the USA. Fourteen of these hybrids commercially available were grown in 1997 and 1998 at three locations of the "Milk Belt" (34° 38' South and 58° 48' L, 23m altitude). The trials were set up in a completely random block design with three replications and the statistical methods applied were AMMI (additive main effects and multiplicative interaction) using biplots in interpreting variety by environment interactions, for the variables yield and expansion volume (EV).

AMMI Model

 $Y_{ge} = \mu + \alpha_g + \beta_e + \sum \lambda_n \gamma_{gn} \rho_{gn} + \epsilon_{ge}$

Y_{ae} = yield for the g genotype in e enviroment

 μ = general mean

 α_{a} = genotype effect

 $\beta_{\rm P}$ = environment effect.

 $\lambda_n = n$ -th axis singular value (eigenvalue)

 τ_{gn} and ρ_{en} = corresponding genotype and environment scores (eigenvectors)

 ε_{qe} = normally distributed error.

Statistical model for the preliminary ANOVA procedure: $Y_{iik} = \mu + \alpha_i + \beta_i + (\alpha \times \beta)_{ii} + \rho_{k(i)} + \varepsilon_{iik}$

Table 1: analysis of variance results for yield

Source	DF	SS	MS
Environments	5	24650	4930**
Rep (Env)	12	23640	1970
Hybrids	13	20540	1580**
Hyb x Env	65	30550	470**
Error	156	40560	260

(*, **) Significant at the 0.05 and 0.01 probability, respectively.

Table 2: analysis of variance results for popping expansion

Source	DF	SS	MS
Environments	5	180.45	36.09**
Rep (Env)	12	100.32	8.36
Hybrids	13	307.84	23.68 **
Hyb x Env	65	716.30	11.02**
Error	156	765.05	5.08

(*, **) Significant at the 0.05 and 0.01 probability, respectively.

The interaction that can be described by two multiplicative components can be represented in a biplot (see biplots I and II). Cultivars are represented by lines, trials by points, both end points are the representation of the end points of vectors starting at the origin. The length of a cultivar line reflects the amount of interaction for that cultivar, thus according with Figure 1, most interaction is due to genotypes 1, 6, 10 and 14. The angle between cultivar lines corresponds to the interaction betwen the interaction residuals. Genotypes 3 and 12, the nearest distributed to the center of the biplot, have more stability. Genotypes 1 and 9, 13 and 8, 2 and 5 are very similar with a high positive correlation. 1 and 10 have a negative correlation. 14 and 6 are very dissimilar with a correlation close to zero. Genotype 14 with a high residual interaction with D environment. The same occurs with 6 in E environment and genotype 1 in A.

In Figure 2, expansion volume, there is less stability for 3, 5 and 6 and the most for genotypes 10 and 14. Similar performance is shown by 7-8, 1-13 and 14. In contrast 5 and 6 are quite alike. There is a particular performance of the genotypes, analysing both figures jointly, that confirms the negative correlation between yield and expansion volume.

Figure 2. Biplot of the AMMI model for expansion volume, with 14 genotypes (1,....14) and 6 environments (A,....F). PCA1 and PCA2 are represented by eje1 and eje2.

Stability analysis of forage response in maize

--Torrecillas, MG, Bertoia, LM

Knowledge of genotype-environment interaction is of vital importance in breeding programs. The ranking of genotypes changes according to the number of evaluated environments, hindering the task of selection. The aim of the present work was to evaluate the stability of eighteen maize genotypes for silage production, through two methodologies. Four indigenous populations, two partially improved composites and their crosses with inbred lines P1 and P2, were evaluated. These materials were selected on the basis of diversity of cycle, origin, plant architecture, and contribution in yield of ear and stover components.

The studied variables were: whole plant dry matter yield (WPDMY), stover dry matter yield (SDMY) and ear dry matter yield (EDMY). Trials were carried out in four environments and over two years. Analysis of Principal Effects and Multiplicative Interaction (AMMI) and Cruz Medina exact conditional test (ECT) (Heredity 69: 128-132, 1992) were employed. The first two axes of the principal component analysis (PCA) in AMMI model explained 89.7 % of the squares sum of the genotype-environment interaction for WPDMY. In ECT analysis a lack of adjustment of the multiplicative model for the genotype 4 was detected. Genotypes detected as unstable agreed with those obtained in the AMMI analysis. Environments 1 (A1) and 2 (A2) contributed in a greater extent to the genotype - environment interaction. The PCA biplot showed that crosses Population 1 x P2 (genotype 13) and Population 2 x P2 (genotype 14) expressed instability associated with environment 2 (A2), whereas crosses Population 1 x P1 (genotype 7) and Population 2 x P1 (genotype 8) had interaction with environment 4 (A4) (Figure 1). Instability in population 4, population 1 x P1 and population 1 x P2 for SDMY was detected. Population 4 and Population 3 x P2 were unstable for EDMY. In the same manner environment 3 was stable for EDMY whereas environment 4 was stable for SDMY. It can be concluded that high vielding crosses were bound to high instability and that per se materials behaved as stable. This information would be useful for subsequent selection directed towards one or the other component.

Figure 1. PCA biplot for WPDMY.

Breeding of maize for silage: Yield components in genotypes with different degrees of improvement

--Torrecillas, MG, Broccoli, AM, Bertoia, LM

The objectives of this work were: i) To analyze the importance of morphological characters (plant architecture and size) on ear and stover dry matter yield, and ii) to verify if the behavior of such variables is maintained in germplasm with different origin and degree of improvement.

Twelve genotypes of maize (*Zea mays* L.), representing four groups of different origin and degree of improvement, were evaluated for their aptitude for silage. Trials were carried out in three environments during the 1996/1997 and 1997/1998 growing seasons.

Groups of genotypes were:

G1 = Three commercial hybrids (Three-way hybrids): Cargill Semiden 5, Funk's Tronador and Pioneer 3452.

G2 = Three Argentine Landraces: Accesions 03-056, 14-066 y 16-042.

G3 = Three experimental hybrids (Single hybrids): LZ 2, LZ 14 and LZ 40.

G4 = Three F1 integrated by: subtropical racial composites without any improvement x Synthetic varieties: Composite Cravo x HP3, White Dent composite x SB73 and Yellow Dent composite x SMo17).

The studied variables were:

Leaf number (LN); harvest index (HI) measured as ear dry matter yield : whole plant dry matter yield ratio; stalk diameter (SD), measured in the node of ear insertion; plant height (PH), measured above ground level to basal tassel branch; leaf area (LA); ear dry matter yield (EDMY) and stover dry matter yield (SDMY).

A multiple regression analysis that included LN, HI, SD, PH, LA as independent variables and EDMY, SDMY as dependent variables in the four groups combined among environments was performed.

Absence of multicollinearity among variables was verified. After a stepwise procedure was performed, models with good predictive capacity (adequate values of R2 and cp of Mallows) were selected.

LN and HI were important in all models, explaining EDMY and SDMY. SD was important in G1 explaining EDMY ((4 = 0.61) and SDMY ((4 = 0.06) and in G2 for SDMY ((4 = 0.02). PH contributed significantly ((1 = 0.07) in the model to predict EDMY in G2. The most adequate models that contributed to predict EDMY and SDMY varied according to the involved genetic groups. LA, LN and HI gave models with good predictive behavior, especially for EDMY in three genetic groups (G2, r2 = 0.81; G3, r2 = 0.55; and G4, r2 = 0.63). It is important to emphasize that these groups lacked any improvement process defined for grain. Results indicate the feasibility of using leaf area, leaf number and harvest index in selection processes of unadapted germplasm, in order to maximize forage production.

LONDON, ONTARIO, CANADA University of Western Ontario

Silver staining root-tip sections in maize --Maillet, DS, Walden, DB

From our ongoing investigation into the heat shock response in

maize, Greyson et al. (1996 Developmental Genetics 18:244-253) reported that the cells in the root-tip which respond to heat shock by an increase in the expression of HSP 18 are located in the first one to three mm. We have observed (Maillet et al. 1999 MNL 73: 67-68) that heat shock can cause changes in the morphology of nucleoli in several cell types. To test the hypothesis that the cells that respond by altering their protein and mRNA expression patterns also exhibit changes in the morphology of their nucleoli, a silver staining method (Howell and Black 1980 Experientia 36:1014-1015) was adapted to stain root-tip sections. Live heat shocked (shifted from 27 C to 43 C for 3h) and control roots from 5 day old Ohio43 seedlings (8 to 10 cm long) were cut into sections approximately 60 um thick with a hand microtome. Sections at 0.5, 1.0, 2.0, and 4.0 mm from the tip including the root cap were fixed (3:1 ethanol to acetic acid) for 24 h. The sections were rinsed in water for 10 min and stained in a mixture of 50 ul of silver nitrate (0.5 g . ml) and colloidal developer (2 % [w/v] gelatin, 10 % [v/v] formic acid) in the dark for 60 min. The sections were rinsed several times in the developer until all of the silver precipitate was removed. The sections were mounted in developer on a microscope slide under a coverslip. Sections were scored for the number of cortex cells that had nucleoli which demonstrated an altered morphology (Table 1.). In Heat shocked material (0.5 mm from the root-tip) nearly all cells had nucleoli which were altered; sections farther from the root-tip had progressively fewer responding cells. Figure 1 presents a photograph of a section, (a) from a heat

Table 1. Heat shock (3 hr at 43 C)and control sections from Ohio 43 root-tips. n = number of roots, E = epidermis, C = cortex, ED = endodermis, P = pith. The changes in morphology seen in HS cells were not observed in any of the nuclei in the other experiments where the number of nuclei was counted.

HS			Respon	d			No R	espond	
	п	E	C	ED	P	E	С	ED	Ρ
0.5 mm	6	200	266	15	102	0	2	0	3
1.0 mm	6	249	249	92	87	14	51	1	16
2.0 mm	5	130	140	20	22	20	110	9	7
4.0 mm	5	0	0	0	0	12	137	0	19
С			Respon	d			No R	espond	
	n	E	C	ED	P	Е	С	ED	Ρ
0.5 mm	5	0	0	0	0	200	180	113	110

shocked root (section taken at 1 mm from the root-tip) and (b) a control section. Cells from heat shocked cells have several small stained nucleolar ovoids, controls have one or two spherical nucleoli.

Sequential C-banding and silver staining of interphase cells in maize

--Maillet, DS, Walden, DB

Banding methods greatly improve the accuracy of chromosome identification. C-banded nuclei derived from cold arrested roottip cells (inbred Mo17) revealed one large C-band on each of 6S and 7L, and a small band on 6L. The large band on 6S included the heterochromatin associated with the NOR. Interphase cells on slides containing root-tip metaphase nuclei had four darkly staining regions (dsr), presumed to be the same material that C-banded in metaphase, and occasionally two smaller dsrs. We reasoned that if other knobs could be seen and distinguished from each other in interphase, they could be used as cytogenetic markers.

The protocols for C-banding (Jewell et al. 1994, Maize Handbook pp. 484:492) and silver staining (Howell and Black 1980, Experientia 36:1014-1015) were modified so that spread cell preparations could be C-banded and then silver stained to examine the arrangement of the knobs on 6S and 7L. Binucleate tapetal cells were used because they are easily identified in interphase, and the stage of the PMCs can be used to ensure that all of the tapetal cells selected are approximately at the same stage of development.

Tassel branches from inbred Mo17 grown in our nursery were fixed for 24 h (3:1 ethanol to acetic acid); anthers were staged by examining propriocarmine stained cells. Anthers with PMCs in diplotene to diakinesis were rinsed in water for 10 min, digested in 5 % [v/v] cellulase (Sigma), 0.5 % betaglucuronidase (Sigma) in 0.01 M citrate buffer, pH4.7 with 10 % [v/v] pectinase (Sigma) for 2 h at 37 C. The anthers were spread in a drop of fixative on a microscope slide, and air dried for 30 min. The slides were stored in 100% ethanol overnight. The slides were immersed in 0.2 M HCl at 60 C for 90 to 120 sec, rinsed in water twice, immersed in filtered 5 % [w/v] BaOH for 7 min at room temperature, rinsed

Figure 1.

three times in water and incubated in 2 X SSC for 1 h at 60 C. The slides were stained in 5 % giemsa [v/v] in phosphate buffer for 60 min. Photographs of wet mounted slides were taken at a magnification of 400 with a photomicroscope. The coordinates were recorded at each location where photographs were taken. The C-banding was removed by immersion in 100% ethanol, water. 0.2 M HCl, and water, each for 15 sec and air dried for 30 min. The slides were silver stained with 2 drops of silver nitrate (0.5g / ml) and two drops of colloidal developer (2 % gelatin [w/v], 10% formic acid) under a coverslip for 60 to 90 sec at 70 C on a slide warmer. After staining, the coverslip was removed with warm flowing water, and the slides were air dried overnight. The slides were mounted in permount under a coverslip and photographed again. Figure 1 presents the same binucleate tapetal cell a) Cbanded, (four dsrs were observed) and b) silver stained, (two dsrs were present) which allows the two C-bands to be distinguished from each other.

Chromatin affinity in interphase --Maillet, DS, Walden, DB

Although it has been possible to examine nuclear organization in metaphase cells, interphase is the stage of the cell-cycle where genes are active and chromatin organization may be necessary for cell type expression. Horn (Ph. D. thesis, University of Western Ontario, London Ontario, 1973) observed that the K10 knob could

be seen in Feulgen stained interphase nuclei; in the presence of two

copies of the K10 chromosome, the knobs were close together. Entire tassels, collected in the morning (ambient temperature 25 C) from inbred Mo17 grown in our nursery, were kept at 27 C or 43 C with the cut end in water for 24 h. Utilizing the methods described in our previous contribution, we were able to examine the arrangement of chromatin in interphase binucleate tapetal cell preparations. By comparing the negatives of cells photographed after C-banding and after silver staining, the relative distance between the knobs on chromosomes 6 (present on both the Cbanded and silver stained negatives) and 7 (present on only the silver stained negative) and between chromosomes 6 and 7 could be measured. Measurements were divided by the diameter of the nucleus and compared between 30 heat shocked and 30 control nuclei. From earlier work (Maillet et al. MNL 1999, 73: 67-68) we reasoned that heat shock would disrupt nuclear organization. The

Table 1. Two sample t-test of Mo17 interphase allinities between heat shocked and control and the diameter of the nuclei sampled.

comparison	chromosome affinities HS mean SD	Control mean SD	df	t
chromosomes	4 00 ./ 1 07	0 44 .14 40	ED	1 00*
1101	4.00 +/- 1.9/	2.44 +/-1.10	20	1.00
6 to 6	3.86 +/- 2.03	2.94 +/- 1.43	58	0.20
6 to 7	4.34 +/- 2.01	3.12 +/- 1.45	118	0.21
nuclei diameter	8.97 +/- 1.05	6.68 +/- 0.97	58	8.63•

* significant at t(1), 0.05, 58

· significant at t (2), 0.05, 118

diameter of spread nuclei was higher in the heat shocked sample perhaps because less structure remained. The mean relative distance between the knobs on chromosome 7 was higher in the heat shocked cells than in the control. This change cannot be explained by the change in diameter of the nuclei as the mean relative distance between the knob on chromosome 6 and the distance between the knobs on 6 and 7 did not change (Table 1.). The data suggest that the knob on chromosome 7 and adjacent chromatin are close together during interphase and that heat shock causes a disruption of organization.

MADISON, WISCONSIN University of Wisconsin

Rooty coleoptile

--Tracy, WF

While doing rag doll germinations on seed from ears of an experimental sweet corn population (Cacahuacintle Dulce x Sweet) I observed seedlings with arrowhead shaped coleoptiles (Fig. 1). Upon closer examination I observed that these seedlings were growing roots out the tip of the coleoptile (Fig. 2). In some cases there was a normal opening at the tip so that the third leaf could emerge. In others the tip was closed and the third leaf would emerge only after the tip of the coleoptile was broken. We grew seed from these ears in 1999 and self pollinated the plants. Of eight selfed ears seven had the rooty coleoptiles. Five of the seven ears when pooled had a ratio of 34 rootys out of 120 total seedlings, very close to a three to one ratio. However, of the other two ears, one had most but not all rooty coleoptile seedlings and the other had very few. I have not made enough crosses to make any conclusions on the inheritance of this trait, but it certainly seems heritable.

Figure 1.

Figure 2.

MARTONVASAR, HUNGARY Hungarian Academy of Sciences

Dynamics of pH changes in corn (Zea mays L.) haploid cell suspension cultures

--Kovács, G

The loss of embryogenic competence of long term cell suspension cultures is one of the major problems faced in the development of in vitro regeneration systems for propagation as well as genetic manipulation. Currently, the causes for the loss of embryogenic competence, which is associated with the time of culture and the number of subcultures, are believed to be genetic or physiological. On the contrary, according to our hypothesis these changes are generated by the repeated stress caused by the suboptimal physical culture conditions, such as pH, dissolved oxygen, etc. The pH of a cell culture medium is one of the most important factors, as growth promoting properties and the selectivity of the culture media are pH dependent. In a majority of cases the pH of a culture medium lies between 5.5 and 6.0. Murashige and Skoog (1962) reported that a pH value of 5.7-5.8 is suitable for maintaining all the salts in soluble form, even with relatively high phosphate levels, and is enough to permit rapid growth and differentiation of the tissue.

Several workers observed that the presence of plant tissue affects the pH of the medium and in most cases there is a fast pH drop from 5.8 to around 4.5 during the first two days of cultiva-

tion. The pH optimum of cell growth is not a constant pH value. It changes with the medium composition, and probably there is a different optimum for maximum growth (cell proliferation) and for differentiation.

Supposing that plant cells have an active role in changing the medium pH, we should choose the initial pH of the medium so that the cells spend less energy on changing their circumstances. The aim of the present work is to determine the effect of the initial pH in consecutive subcultures of corn haploid cell suspensions in order to minimize the stress conditions caused by the periodic pH changes.

An anther culture originated haploid corn cell line was used throughout. This cell line was proved to be able to regenerate green plants in a separate experiment even in large scale cultures.

BM medium supplemented with 1 mg/l 2,4-D and 3% sucrose was used in all experiments. The pH of the medium was adjusted after heat sterilization by sterile 1N HCl or 0.5N KOH. The initial pH of the medium was adjusted to 5.8 in experiment A) and to 4.6 in experiment B). Cell suspension culture was cultivated in 250 ml Erlenmeyer flasks containing 100 ml medium prior to culture inoculation, and was rotated on a shaker at 100 rpm for 7 days at 27 C. The initial dry cell concentration at the time of inoculation was around 0.2 g/l. After 7 days the cells were settled and media was removed. Cell mass was divided and fresh media with adjusted pH was added for the next 7 days subculture.

A New Brunswick 1500 ml CelliGen Cell Culture System fermenter was used for determination of the pH profiles during 7 days of cultivations. Mixing was accomplished using Cell-lift impeller at an agitation rate of 100 rpm. Temperature was controlled at 27 C. Cultures were continuously sparged with air at a rate of 500 ml/min. The fermenter was exposed to warm white fluorescent light (45 μ mol/m²s) for a 16 h photoperiod. pH was measured by sterilizable Ingold electrodes. The medium was the same as in shaking flask experiments, pH of the medium was adjusted after heat sterilization. The cells grown in 4 shaking flasks for 7 days were collected and used as inoculum for the fermentation process. pH electrode signal was recorded on-line by a computerized process monitoring system.

Cell suspension was poured into vacuum filter with a preweighed filter paper. Medium was removed by vacuum and fresh cell weight was measured.

The embryogenic competence of the cell cultures from pH 5.8 and 4.6 was tested in a hormone free liquid BM medium (pH: 5.8) at the end of the experiment.

Our first corn haploid cell suspension culture experiments were carried out in shaking flasks. The initial pH of the media was adjusted to the "traditional" pH 5.8. The pH of the medium at the end of one week of cultivation varied between 4.3 and 4.6. The cells formed 1-3 mm size aggregates and had a brownish color indicating pigment production.

A series of parallel shaking flask experiments were carried out with different initial pH values. The initial pH of the subculture media was 5.8 in experiment A) and 4.6 in experiment B). These initial pH values were used in all consecutive subcultures. Four subcultures were examined for each initial pH and the pH values at the end of the 7 days culture were recorded. (Fig. 1.)

Despite the fact that there was almost 1.5 pH unit difference between the initial adjusted pH of the subcultures there were no significant differences between the two experiments in final media pH values. However there were differences in the "behavior" of

Figure 1. Final pH of the media after 7 days cultivation. Initial pH of the media was 5.8 for experiment A) and 4.6 for experiment B)

the cultures. Cultures on pH 4.6 have lost their bright-yellow color and formed lighter-color or white aggregates. Cell growth was also different. Fresh cell weight after 7 days was 4 times higher than the inoculum weight at pH 5.8 and 9 times higher at pH 4.6.

The changes in medium pH were determined by taking sterile samples from both of the experiment series. Samples were taken and pH was measured once a day during the 7 days cultivation. Measured pH values are presented in Fig. 2.

The result of the pH measurements during 7 days cultivation reflects that pH dropped rapidly from 5.8 to around 4.3 during the first two days of cultivation. After that sudden change pH remains quite stable. On the contrary there was no such dramatic pH drop in the cultures initiated from pH 4.6 where pH slowly drifts to a pH value around 4.3. According to the results of embryoid induction, cell cultures originated from 5.8 media produced dramatically less embryoids than when the initial pH was 4.6. Under the given conditions used for embryo induction only globular embryos were observed in both cases.

More careful examination of the changes in medium pH were carried out in two experiments in a bioreactor. The initial pH of the media in the bioreactor was adjusted to 5.8 and to 4.6. Fig. 3. presents the pH changes during the cultivations.

The results of the bioreactor experiments show the same overall behavior as the shaking flask experiments. The pH changes during the first two days are even more striking. The pH drop at the beginning of the process seems to be a more complex process. After the inoculation at pH 5.8 the medium pH first drops to around pH 4.4 already in the first hours of the cultivation. This pH drop is followed by a short increase then pH monotonously de-

Figure 2. Changes in pH of the media during 7 days cultivation in shaking flasks. pH* in the legend indicates the initial pH of the culture media.

Figure 3. Changes in pH of the media during 7 days cultivation in bioreactor. pH^* indicates the initial pH of the culture media.

creases during the first two days reaching a steady state for the remaining time of the cultivation. This pH fluctuation does not occur in the experiments started from pH 4.6. In this case there is only a small but rapid drop to a value around 4.3 where pH stabilizes already after 12 hours.

It has to be noted that the final pH values of the cultures in bioreactors are a little bit lower than in the shaking flask experiments probably due to the different aeration.

The results of monitoring the changes in the cell culture medium pH suggest that the traditional method of starting subcultures from pH 5.8 without any attention paid to the final pH of the medium leads to periodically changing environment. Each subculture inoculation to high pH causes dramatic stress condition for the cells (Fig. 4.). The rapid pH changes during the first 2 days of the culture indicate that cells must spend energy on adjusting the medium pH to a more favorable value after each subculture inoculation. This energy consumption for maintenance purposes results in a lower cell production yield, and decreased embryogenic capacity.

The adjustment of the initial pH of the subculture media to 4.6 eliminates the periodic pH changes during the first two days of the culture. This also means eliminating stress conditions which result in higher cell production efficiency and embryogenic competence.

Figure 4. Periodic changes in pH of the media during consecutive subcultures. pH^* indicates the initial pH of the subculture media.

MILAN, ITALY

Università degli Studi di Milano

Molecular analysis of abs*-7065, a mutant with severe impairment in seed development

--Giulini, A, Consonni, G, Aspesi, C, Gavazzi, G

The mutant we are going to describe was originally isolated in the selfed progeny of F1 obtained by outcrossing a +/*lil1* heterozygous plant to the W64A inbred line. Since *lil1* (*lili*putian) was isolated by insertional mutagenesis with the mutator (Dolfini et al., 1999), the new mutant could have arisen by insertion of an element of the *Mu* family into a functional gene thus leading to an aborted seed phenotype. This mutant was accordingly named *abs*-7065* (*aborted seed*). Crosses with the A-B translocation stocks locate *abs*-7065* on chromosome 1L.

<u>Phenotype of the mutant seed</u>. Immature (16 DAP) mutant seeds obtained by selfing +/*abs7065* heterozygous plants, are easily distinguishable from normal sibs by a reduction in size and a pale, translucent appearance.

Their endosperm has a soft and fluid consistency while the embryo, not different in size from that of wild-type, appears retarded in its morphogenesis. Mature seeds are completely collapsed but retain a reduced amount of endosperm tissues.

Mutant embryo rescue. Immature embryos of mutant and normal sibs segregating on a selfed +/abs7065 ear were cultured on minimal or enriched media to assay their germination and growth capacity.

Starting at 13 DAP, germination of excised wt embryos can be obtained, while mutant embryos do not germinate until 25 DAP (Table 1). This observation may indicate a delay in mutant development, that affects its germination capacity. Furthermore the percentage of germination is significantly lower (13.2%) in comparison to wt (100%) and seedlings obtained from homozygous *abs7065* embryos are retarded and impaired in their growth. No promoting effect on germination or growth is observed by culturing mutant embryos on enriched media.

A plausible interpretation of these observations that takes into account the close relationship between endosperm and embryo development is that the primary effect of the mutation is impairment of endosperm development leading to a retarded morphogenetic potential of the embryo as a secondary effect, likely due to lack of component(s) elaborated by the endosperm and supplied to the embryo to accomplish its regular development.

The failure to observe a complete phenotypic repair of mutant seedlings obtained by immature embryos would suggest impairment of an early effect of the endosperm upon the embryogenetic process.

<u>Molecular analysis</u>. Since these mutants have been isolated from a progeny derived from an active Robertson's *Mutator* maize stock, its origin can be ascribed to an insertional event. To verify the association between the mutant phenotype and a molecular

Table 1. Growth of mutant and normal sib embryos at two developmental stages on a minimal (MS) medium or on media supplemented with amino acids, vitamins or hormones.

Developmental stage	Cultu	ber	Germ %	ination	Seed	ing grow	vih:					
arage	onior	100	10		MM		MV		MA		MM(1)
	±	ш	±	m	±	ш	±	Ш	±	m	±	m
13 DAP	146	42	100	0	8.3		10,7	-	3,7		ND	ND
25 DAP	218	83	100	13.2	15.6	1.7	6.6	1.0	ND	ND	6.0	0.5

(1) gibberellic acid and benzyladenine

polymorphism, cosegregation analysis was performed. Heterozygous plants were crossed to the W64A line and the genotype (+/- or +/+) of individuals from the progenies was determined by selfing. Genomic DNA was extracted from single plants (110 individuals) and analysed by Southern blot. A 12 Kb EcoRI fragment was found in association with all heterozygous plants tested using an internal fragment of Mu3 as a probe. By digesting with Pstl, a restriction enzyme internal to Mu3, two polymorphic fragments have been detected of 9Kb and 2kb respectively (Fig. 1). The 2kb fragment was cloned; sequence data confirm the presence of the 5' portion of the Mu3 element and of 1115 bp flanking genomic DNA. A 390 bp Xho-Mlu1 internal fragment was used as a probe on Southern analysis: this probe confirms the presence of the 12kb EcoRI and 2kb Pstl fragments in +/- plants, previously highlighted in the Mu3 profile. Isolation of the genomic clones is in progress.

+/m +/m +/m +/m +/+ +/+

Figure 1. Identification of the Mu3-hybridizing Pst1 fragments that cosegregate with the abs*-7065/+ genotype. Pst1 digested DNA from sibling plants was analyzed by Southern blot, using an internal EcoRI/ HindIII fragment of Mu3. The arrows indicate the Mu3-hybridizing fragments that cosegregate with the abs*-7065/+ genotype.

The twin trait in maize

--Pilu, R

The twin phenotype that I am going to describe was first observed in the selfed progeny of a plant heterozygous for *Ac* and *sml* (shoot*m*eristem/ess : MNL73:69) with a frequency of 3% (Fig. 1A).

A further round of selfing yielded four ears, two without and two with twins (frequency: 2.5% and 5.7% respectively), and, occasionally, seedlings with a stem divided into two stems after the first node while the primary root remains undivided (Fig. 1B). When twin plants are outcrossed as male parents to a different line, no twins are recovered in the F1.

In the selfed progeny of a twin plant reproduced in the greenhouse, seeds with twin embryos (Fig. 1C) are recovered with a high frequency (20%) while seedlings obtained by germinating normal seeds exhibit abnormal leaves with two lobes and a stunted growth. Their karyotype shows a normal chromosome number excluding a chromosomal unbalance as the basis of this trait. Taken as a whole these preliminary observations seem to indicate that the twin character is due to a monogenic recessive mutant with low penetrance upsetting the genetic program subtending apical meristem organisation.

Since the character appeared in the presence of Ac; we will assay if its origin is related to Ac induced transpositional mutagenesis.

Figure 1. A) twin plant. B) twin seedlings. C) twin seeds

51

MINAS GERAIS, BRAZIL EMBRAPA Maize and Sorghum

Mapping a novel opaque endosperm mutant using SSR markers

--Maki, CS, Carneiro, NP, Guimarães, CT, Lopes, MA, Paiva, E

To understand more about the relation among the opaque mutations, zein levels, endosperm hardness and nutritional quality of the maize endosperm we started to characterize native maize opaque endosperm mutants. The opaque mutants described in the literature have in general higher nutritional quality and lower zein levels compared to the wild type genotypes. These novel maize opaque endosperm mutants have soft endosperm, low nutritional quality and zein levels similar to the wild type endosperm (Guimarães et al., Rev. Bras. Genet. 18, 2, 259-264). One of the mutant genotypes (BOL II) was crossed to the wild type genotype (BR-201) and the F2 plants were self-pollinated to F4. DNA pools from homozygous vitreous and opaque plants were analyzed in bulked segregant analysis (Michelmore et al., PNAS 88:9829-9832) to map the locus related to endosperm hardness in this mutant. Four out of 276 primer pairs tested (Research Genetics) showed to be polymorphic when bulks of DNA from individuals of vitreous and opaque endosperm were compared: MAG.T01.D04, bng/125, bng/382 and phi083, located at 2.01-2.02, 2.02, 2.03 and 2.04 respectively. To get more accurate map position, DNA from these individuals was tested separately (Figure 1). We are in the process of refining the data using RFLP markers surrounding this genomic region. The same F4 population will be used in a subtractive hybridization strategy to isolate genes involved in the definition of the soft endosperm trait.

Figure 1. SSR marker analysis showing polymorphism among F4 individuals homozygous for vitreous (Group A) and opaque (Group B) endosperm. Parent A is the novel mutant and Parent B is the wild type.

MOSCOW, RUSSIA Institute of Plant Physiology

RAPD markers variability in maize somaclones produced from inbred A188

--Osipova, ES, Dolgykh, YI, Shamina, ZB, Gostimsky, SA

Random amplified polymorphic DNA (RAPD) markers have been used to study genetic variation among somaclones produced from inbred A188. These somaclones differed from the original line in several inherited morphological and biochemical traits (Dolgykh et al., MNL 65:89, 1991; Khavkin et al., MNL 67:84, 1993; Dolgykh, MNL 73:70, 1999). The clones investigated represented two independently produced groups of plants: R11, R14, R27 and R54, which had been regenerated from scutellar callus after cultivation in vitro for two months; and R105, R106, R107 and R119 which had been regenerated after cultivation in vitro for eight months.

Sixteen 10-base primers were used to amplify genomic DNA extracted from leaves of three week old plantlets (Table 1).

Table 1. Sequences of 10-base primers used.

Primer	Sequence	Primer	Sequence
318	5'-CGG-AGA-GCG-A-3'	QR-5	5'-CGG-CCC-CGG-C-3'
340	5'-GAG-AGG-CAC-C-3'	B-1	5'-CGT-CGT-TAC-C-3'
450	5'-CGG-AGA-GCC-C-3'	B-2	5'-GTC-CTC-AGT-G-3'
QR-1	5'-CGG-TCA-CTG-T-3'	B-3	5'-GCA-GAC-TGA-G-3'
QR-2	5'-CGG-CCA-CTG-T-3'	B-4	5'-TCT-TAG-TGC-C-3'
QR-3	5'-CGG-CCC-CTG-T-3'	B-5	5'-GAC-AGT-AGC-A-3'
QR-4	5'-CGG-CCC-CGG-T-3'	B-6	5'-CTT-GGA-TGG-A-3'
10	5'-AGG-CGG-GTA-C-3'	11	5'-AGG-CGG-GAA-C-3'

All primers generated from 2 to 17 markers, which varied in size from 200 to 2000 bases.

RAPD analysis did not detect any DNA polymorphism among the individual plants of original inbred A188 (Fig. 1), confirming a

Figure 1. RAPD profiles of individual plants of inbred A188 generated by primer 11.

Figure 2. Individual spectrum of markers for each somaclone with primer QR-1.

Figure 3. Specific RAPD bands for the somaclones R11, R14, R27 and R54 generated by primer QR-5.

Figure 4, Group-specific RAPD profiles generated by primer B-5.

high level of inbreeding. At the same time multiplicity qualitative and quantitative differences were found between RAPD profiles A188 and somaclones. One type of the primers, for example QR-1, QR-3, B-2 and B-4, generated an individual spectrum of markers for each somaclone (Fig. 2). All genotypes examined, including A188, could be distinguished on the basis of their RAPD profiles with these primers. RAPD profiles produced by other primers (QR-2, QR-4, B-1, 10, 11, 318 and 340) included both polymorphic and monomorphic bands. The primers of the third type (QR-5, B-3, B-5, B-6 and 450) generated common markers for the somaclones of one group. For example, the RAPD spectrum of clones R11, R14, R27 and R54 produced using the primer QR-5 contained a band of about 870 bases, which was absent in RAPD profiles of A188 and other somaclones. The clones R14, R27 and R54 displayed three specific light amplification products with this primer (Fig. 3). Both groups of somaclones could be distinauished one from the other and from the line A188 with the primer B-5 (Fig. 4). The similarity of RAPD profiles of regenerated plants inside one group seems to be conditioned by common origin .

These results demonstrate that the RAPD technique can be applied for elucidation of genetic polymorphism of regenerated plants.

> MOSCOW, RUSSIA Institute of Agricultural Biotechnology

A putative transposed K-box homolog of zmm1 and zag2

--Ermishev, VY, Karyagina, AS, Khavkin, EE, Naroditskii, BS, Zabrodina, MV

Previously we reported (MNL 73: 70, 1999) that the direct amplification of genomic DNA with degenerate primers recognizing the K-box sequence of the MADS-box genes produced DNA bands similar in size to the product of cDNA amplification. A 190-bp amplicon belonging to the *agamous* class was cloned from the A188 inbred, sequenced, and compared to maize *agamous* genes using the program BLAST 2.0.9 (Altschul et al., Nucl. Acids Res. 25: 3389, 1997). The nucleotide sequence of this K-box fragment was 90-94% identical to that of *zmm1* (nucleotides 3693-3758 and 4213-4332) and *zag2* (nucleotides 4760-4825 and 5269-5321).

Several sequences corresponding to the MADS-box motif (exon 1) were previously related to mobile elements (Fisher et al., Nucl. Acids Res. 23: 1901, 1995; Mena et al., Plant J. 8: 845–854, 1995; Montag et al., Nucl. Acids Res. 23: 2168, 1995). Following Fischer et al., 1995, we tentatively define the reported amplicon as a transposed <u>K</u>-box element of *Zea mays (tkz1)*.

The putative transposed element comprises most of exons 3 and 5, a very short stretch of intron 3, and a longer fragment of intron 4 (Figure 1). The nucleotide and deduced amino acid sequences of exon 3 in *tkz1* are 90 and 95% identical to those of *zmm1* and *zag2*. Exon 5 contains a two-nucleotide insert; as a result, the corresponding identities of the nucleotide and amino acid sequences are 90 and 50%. A 6-bp stretch of intron 3 adjoining exon 3 is completely identical to the corresponding sequences in *zmm1* and *zag2*. The sequence downstream is 87% identical to intron 4 of *zmm1*, with a 17-bp stretch completely identical to nucleotides 4213-4229 of *zmm1* and a 12–bp stretch bounding exon 5, which is completely identical to nucleotides 4281-4292 in *zmm1* and to nucleotides 5269-5280 in *zag2*.

 tkz1
 137
 tlcttgttlcagagtgagctgctgtctgctgagattgc-ttacatggcaaaaag
 190

 zmm1
 4281
 4332
 5321

Figure 1, Alignment of *tkz1* to the corresponding sequences of *zmm1* and *zag2* (GenBank accession numbers X81199 and X80206). Exons 3 and 5 are in bold. Identical residues are indicated by asterisks.

53

NEWARK, DELAWARE DuPont Ag products - Genomics JOHNSTON, IOWA Pioneer Hi-Bred International, Inc

Single nucleotide polymorphisms (SNPs) in corn: early lessons --Bhattramakki D, Ching A, Dolan M, Register J, Tingey S, Rafalski A

Single nucleotide polymorphisms (SNPs, pronounced as SNIPs) are the most common form of DNA polymorphisms that can be found in any genome. In crop plants like maize, they can be put to various uses like germplasm finger printing, marker assisted back cross conversion, and marker assisted breeding. SNPs are highly amenable to automation and can potentially be used to create a very high-density genetic map. Some of the SNPs in the coding region (cSNPs) may have functional significance in its correlation with altered phenotype. SNPs are viewed as the next generation of molecular markers that would either complement or replace the existing markers that are routinely used in many laboratories.

Previously we conducted a pilot study and demonstrated the high frequency of single nucleotide polymorphisms and their possible uses as genetic markers for corn. In an effort to isolate a large number of SNPs from maize, eight genotypes representing more than 90% of allelic diversity within the test population that were considered for pilot study, were further selected. A 'resequencing' strategy of isolation of SNPs was adopted and the sequences in the DuPont/Pioneer EST database served as initial templates for primer design. The primer pairs designed from 3'untranslated regions of the genes of interest were amplified from the genomic DNA extracted from the 8 preselected genotypes. The PCR products (an average length of 350 bases) were sequenced using dideoxy terminator chemistry and their sequences aligned to identify the polymorphic sites. The Phred/Phrap/Consed suite of software was custom modified so that the SNPs and small insertion/deletions (indels) are tagged and a file of polymorphic sites is generated. At this context, it needs to be borne in mind that the term "SNP" is being used very loosely here; polymorphisms involving more than just single nucleotides are identified during the process, this included indels as stated above, and also some novel 'Miniature Inverted Repeat Transposable Elements (MITES)'.

To date we have designed primers from more than 700 genes/ESTs of interest. PCR, sequencing, scoring of SNPs and cataloguing was finished for 530 loci, from which we identified variants in 311 loci. The remaining 219 loci were either monomorphic, primers failed to amplify, or the majority of the genotypes did not sequence well. A total of 1655 polymorphic sites were identified within the 311 loci, spanning 107,606 base regions of the maize genome, and catalogued. Indels accounted for 27 percent of all the total variations observed and the rest were comprised of transitions and transversions (SNPs), transitions being 25 percent more than expected. An average of 5.3 variants was detected per locus, although there were hot spots of mutations in many loci. Our results from this large-scale study confirmed the high rate of SNP polymorphism (1/80 bp) and the high rate of indels (1/240 bp). Out of 311 loci for which we have SNP information, 164 of them could be easily mapped due to the fact that they are also polymorphic between the parents (B73 and MO17) of a recombinant inbred mapping population. 41 percent of 168 loci

Table 1: The major haplotypes found in the region spanning intronIV of Globulin1-S locus among the 8 genotypes analyzed for SNP.

				Poly	morphic t	base position		
Haplotype	Genotype			(2) (2)		23712015-114		
	Name/No.	57	130	165	232	236	274	374
			Exon IV	New York		Intron IV		Exon V
H1	3	Т	Т	A	Т	T	ND	С
	4	Т	Т	Α	т	т	ND	C
	6	Т	Т	Α	Т	т	ND	C
	8	Т	Т	Α	Т	Т	ND	С
	B73	Т	Т	Α	т	Т	ND	C
H2	MO17	С	т	A	С	С	D	С
	7	С	Т	Α	С	С	D	C
H3	5	С	С	Т	т	т	D	т

Notes: 1. Sequence length covered: 403 bp. 2. Only the polymorphic positions are shown. 3. ND = No deletion

also result in length difference that could be visualized on a polyacrylamide gel to generate mapping data. An example of haplotypes found in one of the loci is depicted in Table1.

Apart from adding SNPs from additional loci, we are also evaluating high-density high throughput SNP genotyping using different approaches available commercially. SNPs will allow higher throughput; low cost multiplexed genotyping for molecular breeding, genetic diagnostics and research applications.

NORMAL, ILLINOIS

Illinois State University

A survey of ig containing materials

--Schneerman, MC, Charbonneau, M, Weber, DF

The indeterminant gametophyte (*ig*) mutation was recognized by Kermicle (1969, Science 166, 1422-1424) to produce haploids with a frequency of nearly 3%. This mutation can be used to produce paternal haploids whose chromosomes then can be doubled. These plants are diploid and homozygous at all loci and contain the cytoplasm of the female parent. This mutation therefore has been recognized as potentially useful for placing a given nuclear germplasm in a different cytoplasm. This is of interest to the seed industry because it would make it possible to place a nuclear genome in a different cytoplasm in far fewer generations than by using conventional backcrossing.

In an effort to identify the efficacy of this mutation, several stocks containing *ig* in different genetic backgrounds were grown and crossed as female parents by an unrelated glossy (*gl*) tester with normal cytoplasm (Table 1). Progeny were planted in the sandbench and individual *gl* plants were identified to determine the frequency of androgenic plants produced by each genotype. To verify that the *gl* plants were indeed haploids, root tips were harvested and the ploidy level of each plant determined cytologically by counting the metaphase chromosomes of at least 3-5 cells. Several androgenic diploids (10.8%) were also recovered in this study, a result consistent with Kermicle's observations (1974, p. 137 in Proc. First Intnl. Symp. on Haploids in Higher Plants, ed. K. Kasha, Guelph, Canada).

The materials from the Stock Center that were originally provided by B. Kindiger which should have possessed two normal chromosome 3's with *ig* and a B3-Ld with Ig did not produce the expected plant types in our hands. Every one of these stocks produced large numbers of small plants that had a distinctive abnormal phenotype that was different from the phenotype of haploids. Table 1.

Source/Stock	Total # grown	Total gl idenlified	Total # Androgenic Haploids	Total # Paternal Diploids	% Androgenic Haploids/ Diploids produced
8. Kindiger (several cytoplasms) provided by the Stock center	5331	24	20	4	0.45%
J. Laughnan (various lines & cytoplasms), provided by the Stock center	6503	6	6	0	0,09%
Originally from Bob Brawn (Funks) N cytoplasm; D, Weber's collection	3482	13	12	1	0.09%
Originally from Bob Brawn (Funks) C cytoplasm; D. Weber's collection	2234	8	6	1	0.37%
Originally from David Alvey (Indiana); D. Weber's collection	1553	26	26	0	1.67%
Originally from Jerry Kermicle, U of Wis.;D. Weber's collection	936	5	3	2	0.53%
Originally from Bob Brawn (Funks) C cytoplasm; D. Weber's collection	2120	25	24	1	1.18%
Jerry Kermicle; U of Wisconsin	1739	8	8	0	0,46%
Jerry Kermicle; U of Wisconsin	1456	1	1	0	0.06%
Originally from Bob Brawn (Funks) N cytoplasm; D. Weber's collection	1013	4	2	2	0.39%

This abnormal phenotype was the same as plants that had lost much of the long arm of chromosome 3 or all of this chromosome (hypoploid for 3L or monosomic for chromosome 3). Furthermore, these exceptional plants were examined cytologically and were found to contain 20 chromosomes. From these and other observations, it appears that the complete B-A translocation was present in these stocks and that the chromosome constitution was not as described by Kindiger and Hamann (1993, Crop Sci. 33:342-344). Also, the frequency of haploids produced by these stocks was much lower than reported by Kindiger and Hamann (1993). The materials provided by J. Laughnan (Stock Center) were also difficult to discern. The fact that the plants were not definitely male sterile and did not produce haploids in the expected frequency suggested that ig was segregating, or a restorer gene was segregating. Certain plants of the two stocks originally provided by R. Brawn and D. Alvey that had been maintained for over 25 years in our culture collection did produce higher frequencies of paternal haploids than the other stocks, 1.67% and 1.18% respectively. The reason for this is unknown. The materials provided by Jerry Kermicle produced paternal haploids but at a lower frequency than expected. This survey has allowed us to determine which ig containing materials produce paternal haploids with the highest frequency and also suggests that genetic background is important.

NOVOSIBIRSK, RUSSIA Institute of Cytology and Genetics, Russian Academy of Sciences WOODWARD, OKLAHOMA

Southern Plains Range Research Station, USDA-ARS

The genetic programs of nonreduction and parthenogenesis in corn-gamagrass hybrids are inherited and expressed in an independent manner

--Sokolov, VA, Dewald, CL, Khatypova, IV

About 40 years ago Prof. D. F. Petrov proposed the hypothesis of the digenic control of apomixis in gamagrass: one gene is needed for the control of nonreduction and formation of the diploid egg-cell; the other for its parthenogenetic development to be realized (Petrov et al., In: Apomixis and its role in evolution and breeding, New Delhi, India, 9-73, 1984). The discussion about these constituents of reproduction through asexual seeds -Petrov called them elements - continues up to now (it is excellently set forth in a report by Andrea Mazzucato, Apomixis News Letter 9, 1997, http: // www. cimmyt. mx). Attempts to find segregants for nonreduction and parthenogenesis in backcrosses of apomicts on sexual forms are also in progress, which may give evidence for their genetic control being independent. We won't consider here all that was done in this direction since these results were discussed repeatedly and deeply (Asker and Jerling, Apomixis in plants, 1992; Nogler, In: Embryology of Angiosperms, 1984; Mogie, The evolution of asexual reproduction in plants, 1992). We'll note however, that proceeding from what is known now about the biology of reproduction and kernel development, two genes are an unacceptable simplification (Carman, Biol. J. Linnean Soc., 1997; Sokolov et al., Proc. Acad. Sci. (Russia), 347(5) : 714-717, 1996; Blakey et al., Genome, in press). We would remind you that besides apomeiosis and parthenogenesis their actions are strongly modified: 1) epigenetically (imprinting, paramutations); 2) by telomeres. As our knowledge is being accumulated other factors influencing apomictic development will undoubtedly be discovered.

It is quite obvious that in species with different types of reproduction through asexual seeds contributions of these factors are not the same. For that reason apparently it's more correct to discuss experimental results only in application to the object on which they were obtained in order that these might not be exaggerated more than the method used allows.

The present report is the result of studying the offspring of corn-gamagrass hybrids with different ratios of parental genomes (the pedigrees were published earlier in Sokolov et al., Russian Genetics 34 : 499-506, 1998), produced from back-crossing F1 (2n=56; 20Zm + 36Td) by corn and very rarely spontaneously obtained hybrids with doubled genomes: 1) $2n = 2 \times 39$ (30Zm + 9Td) = 78; 2) $2n = 2 \times 38$ (20Zm + 18Td) = 76.

Also, new crosses of corn with gamagrass were made and F1 hybrids were obtained that were backcrossed by corn with the purpose of analysing for segregation between nonreduction and parthenogenesis in gamagrass by family. Twenty three BC1 families were studied in all.

In Table 1 the results of segregation among the offspring of the corn-gamagrass hybrids are cited. From the data presented it's quite evident that the number of sexual offspring ($B_{III} + B_{II}$) increases with an increase in the corn portion of the genome of the hybrids (the sexual parent) relative to the number of genomes introduced into them by gamagrass (the apomictic parent). It need

be noted that the effect of the increase in the number of corn chromosomes on suppression of nonreduction (B_{II} -hybrids) and parthenogenesis ($B_{III} + B_{II}$ - hybrids) is not the same. As we can see, parthenogenetic development may not be realized even with a 1:1 ratio of the genomes (F_1 hybrids).

Table 1. Segregation in the offspring of corn-gamagrass hybrids with different ploidy levels for apomeiosis and parthenogenesis traits.

Hybrids	Offspring type				
	Number of apomicts	Number of B _{III} -hybrids	Number of B _{II} - hybrids	Total	
F1 2n=56 (20Zm + 36Td)	98	7	0	105	
BC 2n=38 (20Zm + 18Td)	177	4	0	181	
BC 2n=39 (30Zm + 9Td)	132	13	0	145	
BC 2n=40*	105	6	0	111	
BC 2n=59 (50Zm + 9Td)	21	13	2	36	
BC 2n=60**	102	54	5	161	

* The genome of this line has one unusual chromosome 6 from corn carrying an extra NOR on the long arm in addition to the regular NOR on the short arm. It has been previously reported as a Mz -Tr translocation but as the analysis of spacer regions was not made such an affirmation is unproved (Kindiger, B et al., Genome 39 : 1133-1141, 1996). Besides, the line carries two different size telocentric chromosomes. The line is derived from a 39-chromosome line (302m + 9Td), so phenotypically and by its hybridological behavior it is close to the hybrids having this genome.

**BIII-hybrid produced from pollination of the 40-chromosome line with tetraploid corn.

The development without fertilization of egg-cells may not be realized even in lines with a 2 : 2 ratio of the genomes (F₁ hybrids) and we observed this in 7 cases among 105 plants. Such a proportion (about 10%) of B_{III} offspring holds in the hybrid lines up to a 5Zm : 0.5Td ratio of the genomes when their number sharply increases to 35%. For a significant increase in a proportion of egg - cells with a reduced chromosome complement (B_{II}-hybrids) a tenfold difference in a ratio of the parental genomes is needed but even in that case their number is by an order less than that of fertilized unreduced egg- celles(B_{III}-hybrids).

These results suggest the independent penetrance of the two constituents of apomixis as well as a difference in the number and quality of genes involved in their control. The apomeiotic constituent presented in Table 1 is programmed sufficiently rigidly and realized as dominant even with a multifold difference in the number of the genomes in favour of the sexual parent. At the same time parthenogenesis exhibits incomplete penetrance even in F₁ hybrids and further is highly labile and decreases inversely to increases in the ratio of corn genomes to gamagrass genomes.

A small sampling of results is presented in Table 2. The ability to obtain offspring from these hybrids is complicated enough by reason of their very high female sterility. High-productive tillering is characteristic of both, so we pollinated about 700 flowers of the 78 chromosome plants with tetraploid and diploid maize pollen and obtained 34 very shrunken kernels. All these were from pollination with the commercial hybrid ICI (2n=20). In total only 15 of them gave us plants. The results concerning the second plant were taken from the work of our laboratory published earlier (Yudin and Lukina, Proc. Acad. Sci. (Russia), : 273,#5, 1246-1248,1983). These hybrids were also actively pollinated and set 7 kernels from pollination with hexaploid corn (2n=6x=60).

It's noticeable that 14 plants from the 15 obtained from the

I dole 2. Ocyregation in the onspirity of the doubled contradinaviass hyp	Table 2.	Segregation in	the offspring of the	e doubled corn-gamagrass hy	brids.
---	----------	----------------	----------------------	-----------------------------	--------

Hybrids	Offspring type					
	Apomicts	B _{III} -hybrids	B _{II} -hybrids	Total		
BC 2n=78; 2 (30Zm + 9Td)	0	14	1	15		
BC 2n=76; 2 (20Zm + 18Td)	7	0	0	7		

78-chromosome form, turned out to be dihaploids and the other was a B_{II} -hybrid., Unlike the 39-chromosome apomicts, which were always sufficiently homogeneous morphologically, the plants in question markedly differed from one another both in tillering degree (1 to 8) and in number of ears, character of their placement and development. In the given family we observed many off-types noticed earlier as being rare autosegregants in the 39-chromosome lines. It is possible that this is a consequence of epigenetic marking realized under the meiotic development of egg- cells.

We'll especially stress that isogeneity under the doubling of the small gamagrass complement in the 78-chromosome plants leads to the normal proceeding of meiosis and formation of reduced egg- cells which develop in the main parthenogenetically and we observe "dihaploid" offspring. This is affirmation of independent penetrance of hereditary structures responsible for apomeiosis and parthenogenesis as in the given case the latter is realized not after nonreduction but in an inverse variant after meiosis.

The second plant in Table 2 (the 76-chromosomes) produced only apomictic offspring. When comparing its hybridological behaviour with the preceding case one may suppose that the action of two haploid complements of gamagrass chromosomes differs from that in gamagrass with twice the complement of 9. Perhaps the effect of 60 corn chromosomes is also stronger in the 78-chromosome plants than the 40 in the 76-chromosome plants.

And finally the data presented in Table 3 generalize the results from backcrossing a 46-chromosome F1 hybrid by diploid corn. Most BC1 families (15 of 23) proved to be apomicts, that is, like the mother plant, they had 46 chromosomes. Another group (7 families) were represented mainly by apomictic offspring but in addition they had 1 to 3 B_{III}-hybrids. In that case, as well as in those considered before, parthenogenesis does not have 100% penetrance, though the ratio of the genomes 1 : 2 is in favour of the apomictic parent.

Family	BC 1 plant ploidy					
	Apomicts	B _{III} -hybrids	Total			
57	13	0	13			
92	11	0	11			
112	12	0	12			
188	8	0	8			
190	11	0	11			
236	11	0	11			
251	9	0	9			
289	9	0	9			
300	13	0	13			
334	14	0	14			
355	14	0	14			
365	13	0	13			
392	8	0	8			
415	15	0	15			
484	8	0	8			
Total: 15	169	0	169			
45	15	1	16			
46	17	1	18			
77	12	1	13			
79	12	3	15			
175	9	1	10			
302	11	1	12			
383	12	1	13			
Total: 7	88	9	97			
363	0	15	15			
Total: 1	0	15	15			

Table 3. Segregation in gamagrass (2n=72) for parthenogenesis trait.

One family (363) was represented by B_{III}-hybrids only, i. e. parthenogenesis is absent from this form.

All the results present evidence for the independence of the control of apomeiosis and parthenogenesis and for the possibility of segregation in gamagrass. Besides, based on these results, one may suppose that the number of genes controlling development without fertilization exceeds the number of genes controlling nonreduction and their penetrance depends on many genotypical circumstances and external factors.

The authors express deep appreciation to Dr. J. G. Carman for fruitful discussion. The research was supported by the Netherlands Organization for Scientific Research Grant No. 047.007.019 and Russian Foundation of Basic Research Grant No. 97-04-49301.

PASCANI, REPUBLIC OF MOLDOVA Maize and Sorghum Research Institute

Differences in sensitivity to herbicide of maize lines obtained under disruptive selection for reversion frequency of the mutable allele o2-m(r)

--Koterniak VV

Earlier (MNL, 73: 76-79) we reported about the lines obtained under disruptive selection (started in F5 progeny of one ear) for low and high content of whole endosperm revertants (WER). These lines were designated as LFWER and HFWER respectively. The frequency of WER formation is conditioned by the frequency of reversion of the mutable allele o2-m(r) (as a result of excision of the receptor element rbg from the opaque2 (o2) locus in the presence of the regulatory element Bg) which takes place before the first meiotic division of the primary endosperm nucleus. We established that differences in WER content in lines obtained are determined by changes in state of the initial receptive allele o2-m(r):3449 and the regulatory element Bg-3449. Changed forms of the receptive alleles and the regulatory elements presented in LFWER and HFWER lines were respectively designated as o2-lf, Bg-lf and o2-hf, Bg-hf. Lines obtained differed not only in WER content but also in some quantitative traits (MNL, 73: 76-79).

In 1999 we observed significant differences between LFWER and HFWER lines in their sensitivity to herbicide "Buctril D", Rhone Poulenc Inc., (22.5% of bromoxinil + 22.5% of 2,4-DMA) applied for weed control in the concentration of 0.56 kg/ha of the active substance at the plant stage of 3-5 leaves. Lines obtained under selection for low WER content (LFWER lines) did not show visible symptoms of sensitivity to the herbicide. In contrast with this, HFWER lines were characterized by high sensitivity to the herbicide expressed in strong leaf twisting (Fig. 1).

Stronger sensitivity of the HFWER lines to the herbicide was quite unexpected since the plants of these lines in comparison with the plants of LFWER lines are more vigorous, have higher kernel weight, kernel volume and number of leaves on the main stalk (MNL, 73: 76-79).

Sensitivity to herbicide of HFWER lines is not connected directly with the frequency of reversion of the mutable allele o2-hf. Either the "standard" HFWER lines or the o2-hf; Bg-hf genotype and their o2-hf; +Bg derivatives lacking the regulatory element Bg with the typical o2 endosperm appearance and the absence of WER both were sensitive to herbicide. The same sensitivity to

Figure 1. Herbicide sensitivity (expressed in leaf twisting) of the lines obtained under selection for high frequency ("HF", left row) and low frequency ("LF", right row) of whole endosperm revertants.

herbicide was observed in HFWER sublines with WER frequency close to that of LFWER lines obtained as a result of reverse selection for WER content. (The reverse selection, i. e. selection for low WER content at HFWER lines and high WER content at LFWER lines, was effective for the former and ineffective for the latter, suggesting deletion changes in the *o2-lf* allele and indicating that the change in state which led to formation of this allele was caused most likely by internal deletion of the *rbg* element (Maydica, 1999, in press)).

It seems that differences in sensitivity to herbicide between LFWER and HFWER lines are not linked with the possible differences in their developmental stages. Though LFWER lines are earlier in comparison with HFWER lines by 1-3 days (MNL, 73: 76-79). The big majority of the plants of these lines were in the same developmental stage as the plants of HFWER lines. Thus 79% (34 out of 43) of the plants of LFWER families had the same date of flowering of male inflorescences as the plants of HFWER families (indicated data were obtained on the families of LFWER families (indicated data were obtained on the families of LFWER and HFWER lines used in the reverse selection program). Notwithstanding this, the plants of LFWER lines did not show visible reaction to herbicide.

Since LFWER and HFWER lines were obtained under disruptive selection for WER content and are characterized by the different states of the Bg-rbg system components (which are responsible for WER content) we can suggest that differences between these lines in herbicide sensitivity (as well as differences in quantitative traits) are also connected either with disruptive selection for WER content or with the states of the Bg and rbg elements. In case of insertions of the rbg or Bg in the genes determining these traits (e.g. insertion in the gene(s) responsible for herbicide resistance) the activity of such genes can be changed and be dependent on the activity of the components of the Bg-rbg system of transposable elements. If the insertions of rbg or Bg elements in the mentioned genes were presented in the initial source of instability before the disruptive selection was started we can infer that later these elements could undergo spontaneous changes in state (as a result of internal deletions, intragenic transposition etc.) which could be picked up by the following disruptive selection. Such changes in state could have not only spontaneous character but be induced by the rbg or Bg elements responsible for low and high WER content in these lines (i. e. by the

rbg elements presented in *o2-lf* and *o2-hf* alleles and by the *Bg-lf* and *Bg-hf* elements). This kind of interaction can be assumed taking into account the paper of Cuypers et al. (EMBO J., 1988, 7: 2953-2960) in which it was established that a defective *En-I102* element reduced the excision frequency of both the autonomous *En-1* element and the inhibitor element *Spm-I5719A*.

Bg and rbg elements could affect the activity of the genes responsible for the herbicide resistance and quantitative traits also through their insertions in such genes arising as a result of transpositions of the receptor elements from the o2-If and o2-hf alleles and transpositions of the regulatory elements Bg-If and Bg-hf. Because of differences of these Bgs and rbgs (due to their changes in state) we can expect the differences in activity of the genes in which they are inserted.

RALEIGH, NORTH CAROLINA North Carolina State University

A remarkable new teosinte from Nicaragua: Growth and treatment of progeny

--Bird, RMcK

On 7 November 1989, Allan J. Hruska, working for CARE (the relief agency), collected a sample of teosinte seed in northwest coastal Nicaragua near Honduras. Two years later Hugh Iltis, Bruce Benz and Alfredo Grijalva found and collected the teosinte at a ranch, Apacunca, in the department of Chinandega. The site is peculiar for teosinte, only 10 m elevation and frequently flooded during a 6-month rainy season. On a return visit, Iltis and two Nicaraguan associates collected large seed samples (Iltis 30919) at the Rancho Apacunca locality. This seed is available at the Maize Germplasm Bank of the International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico, accessioned as CIMMYT No. 11083 and at the United States Department of Agriculture's North Central Regional Plant Introduction Station (NC7) at Ames, Iowa (accession Ames 21893).

John Doebley planted seed of the Hruska collection in a growth chamber, observing:

"Plants produced mature seed four months after planting, this much more rapidly than is typical of this species [*Zea luxurians*]. This collection, clearly differentiated from the Guatemalan form of this species by its small stature and early maturity, may represent a new subspecies." (label on specimen Doebley No. 648).

I saw plants of the CIMMYT accession being grown for seed replication in the field station at Tlaltizapán, Morelos (940 masl), in early 1995 (planted in July, 1994). They were profusely tillered, standing about 1.6 m tall, and were flowering. I asked Dr. Suketoshi Taba to bring a plant to Texcoco (near Mexico City, 2255 m) after the seed were harvested, on the suspicion that it would continue growing. This done, the plant was cut into three parts, each of which grew well, one flowering twice more. The 1994 clones at El Batán were preparing to flower at the end of 1996 when killed by frost.

Shoot morphology: After soaking the fruit cases (rachis segments) in diluted pharmacy H₂O₂ (20%) for over an hour, I planted original and self-pollinated seed of CIM 11083 in a screenhouse at CIMMYT's El Batán station in March, 1996, and, on 25 Sep 98, in a North Carolina State University greenhouse in Raleigh, NC. For months the two stands grew similarly, but there was segregation of some interesting traits (Table 1). In Raleigh,

the four plants started growing tillers four weeks after planting, at the lowest nodes of the main stem, and then at the lower nodes of larger primary tillers. Tillers eventually totaled 22-31, up to 15 being primary (on the main stem).

A week later, starting a new phase of juvenile Stage 1, about half the plants were prostrating themselves on the ground (for Plant 1, main stem at 20° from the ground, tillers at 0°), growing like maize with the *lazy* gene, while the rest relaxed to 50° - 70° . By this time there were 5 leaves with auricles showing. At this point, I commenced numbering every fifth leaf on the main stem and the largest tiller.

At the start of Stage 2, 15 weeks after planting (8 Jan 99), the stems of all plants were growing more upright, including the 15-28 tillers. Main stems had 17-21 leaves. The main stems were inclined at 30°-80°, tillers at 40°-60°. A few more tillers were produced before 14 Feb, none thereafter. Perhaps the pots were too small, although fertilizer was added occasionally. Stage 2 continued into the autumn for many plants -- lights in nearby greenhouses and then long days prevented flowering. However, in cuttings transplanted to a garden, flowering was induced by artificially lengthening nights with black plastic covers (below).

As plants have matured, removal of old leaf sheaths has revealed very short internodes and masses of secondary prop roots. The approximate distances from node 1 to node 20 of the main stems of the original four plants are 3.5 cm, 7.5 cm, 11.5 cm and 10.2 cm. I recommend measuring internodes as soon as possible, before the secondary roots grow. Average internode lengths in the interval between nodes 20 and 25 of the four plants are 1.0 cm, 1.4 cm, 1.2 cm and 1.7 cm (the two shorter are the two more prostrate plants in Stage 1). Higher internodes are longer.

It has been easy to cut tillers and root them. Three were taken from Plant 1 on 29 Dec 98, and three were cut from each of the 4 original plants on 18 Jan 99. Those that were about 1 cm in diameter did well, better if a bit of root had emerged. The propagated plants grew much like the originals, but those cut after December did not recline as much, UNLESS they were transplanted outdoors (16 Apr) where angles were 40° to 60° less than the equivalents indoors (Table 1). The three cut in December from Plant 1 were lying flat or nearly so (0°-20°) by 9 Feb, and remained nearly prostrate through 21 Apr, even though they were treated in varying ways (below)! Those of Plant 3 reclined at an intermediate angle. Two cuttings made on 3 June have not tillered. Perhaps cuttings were imprinted by the stage they were in when cut, but crowding of plants, root binding and temperature seem to have had major effects. One January cutting of each original was transplanted to my backyard on 16 Apr, where those of Plants 1, 3 and 4 eventually produced 28-34 tillers and enormous plants; the Plant 2 cutting has remained smaller, eventually becoming shaded by the others.

Leaf counts show that cuttings reflect their source plants in relative numbers of leaves grown per month; Plants 2 and 4 had fewer leaves by 22 June than Plants 1 and 3. New leaves emerged in intervals as short as four days.

Leaves of this teosinte bear small (0.4 mm long) hairs visible with a loupe, but only on the upper surface of the blade, not the sheath or auricle. Leaf blade margins have sharp, apically directed barbs 0.06 mm long which can cut skin. When sheaths are rubbed upward, one feels (especially with the lips) a slight, downwardly directed roughness. Shapes of blades will be discussed.

A flooding experiment: Because of this ability to replicate

Table 1. Measurements of four original and 11 propagated plants of Nicaraguan teosinte. The sodd source is CIMMYT's accession CIM 11083 (=illis 30919), The numbers of leaves are for those with auricles showing. Identifiers for cuttings (Cut.) include the number of the source plant, one unique letter if cut from the source plant, and two letters if cut from a cutting. Trt.: treatment; IN: internode; GH: greenhouse; FY: backyard; NL: nights lengthened in backyard.

Identi- fication	Trl,	Date When Cut	Tiller Angles June	No. of Tillers 16 Aug	No. of Leaves 22 Jun ¹	No. of Leaves 20 Sep	Length Leaf (mm) No. 24-26	Width Leaf (mm) No. 24-26
Plant 1	GH	***	80	25	39	49	86	45
Plant 2	GH		80	23	35	41	74	50
Plant 3	GH		55	31	34	42	83	47
Plant 4	GH		80	22	32	39	98	58
Cul. 1a	GH	29 Dec	60	16	31	42	79	43
Cut. 2b	GH	18 Jan	60	6	20	31		
Cut. 3b	GH	18 Jan	40	4	22	35		
CuL 4b	GH	18 Jan	85	2	20	32		
Cut, 1c	GH-FL	29 Dec	65	5	31	46	80	45
Cut. 1d	BY	16 Jan	-5	34	26	45	92	47
Cut. 2a	BY	18 Jan	25	8	19	31		
Cul. 3a	BY	18 Jan	0	28	23	42		
Cul. 4a	BY	18 Jan	25	29	20	35		
Cut, 11	BY-NL	18 Jan	60	12	25	45	87	46
Cut. 3aa	BY-NL	3 Jun		0	ca. 3	25*		

 Node and leaf numbers for cutlings are counted as the number which have emerged since cutling.

* For Cul. 3aa, the final leaf number - started tasseling on 31 Aug.

plants of Nicaraguan teosinte, it has been possible to run several experiments on the "same" plant. Cuttings of Plant 1 ended up: (a) in a tank of water, (b) in 15 cm and 25 cm pots in the greenhouse, and in my backyard, (c) with and (d) without night-lengthening.

Plants in Chinandega, Nicaragua had been observed growing up to 5 m tall, yet none of the progeny grown in Mexico grew over 2 m tall, so I have been testing a hypothesis that extended flooding of the plants greatly stimulates growth. On 16 Feb one of the December cuttings (Plant 1, Cut. 1c) was placed in a tank of water so that the roots, but not the shoots, were constantly underwater (another plant was submerged 5 cm deeper but suffered badly so after 16 days it was removed). Cut. 1c did not recline as much as twin cuttings. It has grown well in a 25 cm pot. By 5 June it had grown only 7 tillers, while an unflooded twin had 12. On 23 Sep it was growing taller than the controls and other plants, about 1.8 m to the tallest auricles, versus 1.0-1.3 m. It, as the others experiencing short nights, remains in vegetative Stage 2. It continues to grow ever taller than the others.

Cuttings of Plants 2 and 3 (Cut. 2c & 3c), in 15 cm pots, were placed in a separate water tank on 22 Apr, with the roots just under water. These two were lowered 6 cm on 5 June, and even more about a month later. One soon rotted at the base and the other later, but nodal roots have grown and the plants still live, hydroponically. All three plants have grown masses of secondary roots in the water, with small tertiary roots 0.2-0.4 mm in diameter extending upward, either 1/2 cm above the soil surface, or 1.5-2.5 cm towards the water surface. The small roots are dense, about 40 per 3 cm of secondary root. A bluish green alga has been found growing over the roots of the cutting from Plant 1, possibly affecting its growth.

Photoperiod adjustment: In North Carolina, short summer nights and extraneous greenhouse light in the winter has prevented flowering, so artificial night-lengthening was applied to cuttings of Plants 1 (cut on 18 Jan) and 3 (cut on 3 June). Three of an additional four plants grown from seed from Nicaraguan teosinte plants pollinated in Mexico (planted 16 Apr 99) were also treated, as were plants of *Z. luxurians* and of *Z. mays* ssp. *huehue-tenangensis*. Frames 4 ft. high were covered in black plastic, 4 mil thick. These were placed over the plants for 21 nights (17 July-7 Aug), 13 hours each night. By 13 Aug it was obvious that changes had occurred -- emerging leaves had a different shape (below).

A tassel appeared on Cutting 1f on 19 Aug, silking started on 29 Aug and pollen shed started on 31 Aug. Tassels on Cutting 3aa appeared 6 to 16 days later, but shed much later, slowed by cool weather after 16 Sep or by crowding. Perhaps the older the plant or cutting, the more quickly it can be induced to flower, or being a cutting from a cutting may have affected the later one. Seedlings may be ready to flower later than cuttings made on the planting date. None of the untreated plants showed a sign of flowering by 22 Sep, but by 25 Oct branches were growing from upper nodes and leaves were broadening at the base.

Flowering stage: The third, reproductive stage of shoot development is quite different. The forms of the tassels, ear branches and earlets will be described in a later report. As reproductive structures developed, upright stems, leaves and upper branches changed. An indicator of Stage 3 was the shape of the leaves, broadened at the base and shortened. Broadening started at nodes roughly where the lowest ear branches occurred. Widths at 5 cm from the liqule, for leaves in the middle of the zone of ear branches, ranged 45-59 mm, lengths ranged 54-70 cm, and maximum widths ranged 49-63 mm at 30-45% of the distance from ligule to tip. Grown outdoors, leaves on untreated plants, still in Stage 2, reached 1.4 m long. Their widths at 5 cm from the lique were only 15-30 mm. Their maximum width was at more than 1/2 of the liqule-tip distance. On plants at Stage 2 in the greenhouse, leaves were smaller in all dimensions but had the same shape as the outdoor vegetative cuttings.

Discussion: Several trends and much variation have been noted. While taking measurements and notes, many questions occurred to me. Maybe the flooding noted at the Apacunca site ebbs and flows with the size of storms. Would the plants grow taller and better if flooding alternately covered stems for up to 30 cm and uncovered roots to a depth of 5 cm? Might the 5 m height of some plants at the collection site be due to introgression from maize? F1 hybrids of maize with *Z. luxurians* and this teosinte reach that height. What are the youngest age, shortest days and fewest days of treatment which will give consistently good flowering? Does the "quality" of a cutting change over time or over generations of cutting? Do cool temperatures increase the "lazy" effect? In many ways this is a most unusual teosinte.

SAINT PAUL, MINNESOTA University of Minnesota

Zea diploperennis backcross adapted to U.S. corn belt --Carlson, LA

Zea mays backcrossed twice to Zea diploperennis and selected for blooming in a long day environment creates a perennial strain closer to Zea diploperennis.

Pollen was collected from adapted descendants of *Zea diploperennis* x Maize plants (MNL #63, Pages 106 and 107) and backcrossed to *Zea diploperennis* P.I. No. 441931. About 100 plants from the above cross were grown in the greenhouse during the winter of 1995-1996. Two fans were directed on these plants and the few Maize plants for crossing purposes were detasseled. About 2000 seeds were harvested from these plants. One isolation plot and one breeding plot were planted in the spring of 1996. The isolation plot plants that produced seed were transplanted to the greenhouse in the fall with the seed from each plant identified. Only seed that came from plants that survived the transplantation and grew was planted in 1997.

Another isolation plot was planted in 1998. Seed from these plants was identified and saved and the plants were transplanted into the greenhouse. Again in 1999 an isolation plot was planted U.of M. Experiment Station at Rosemount with seed that came from the perennial plants. The perennial plants from the greenhouse were planted in a separate isolation plot and any that didn't grow in 1999 were identified. Rows of seedlings that descended from plants that didn't grow when replanted in the spring were chopped off when they were about three feet high.

Most of this population bears seed partially extruded from the cupule but some seed is completely enclosed in the fruit case. All plants bear many ears and have numerous tillers. Seed can be obtained from Mark Millard at the Plant Introduction Station at Ames, Iowa or from the Author.

SAINT PAUL, MINNESOTA University of Minnesota and USDA-ARS

Towards a radiation hybrid map for maize chromosomes

--Kynast, RG, Okagaki, RJ, Odland, WE, Russell, CD, Livingston, SM, Rines, HW, Phillips, RL

Radiation hybrid mapping is one alternative to traditional genetic chromosome mapping. Genetic mapping allocates markers to linkage groups and provides information on the probable sequential order along the chromosomes. Distances between the marker loci are based on the frequency of their meiotic recombination and usually expressed in centiMorgans. Genetic maps are commonly derived by intercrossing genotypes possessing distinct characters of interest and analyzing trait segregations in the offspring. On the other hand, a detailed radiation hybrid map of the human genome is accomplished by using hamster-human somatic cell fusion lines. Human cells are first irradiated to fragment the chromosomes. These cells are then fused with hamster cells. The generated cybrids are propagated under selective conditions to create cybrid lines carrying different fragments of human chromosomes in addition to the entire hamster genome. Cybrid lines with human chromosome fragments are screened for the presence versus absence of markers. Maps may then be created by using the set of cybrid lines as a collection of overlapping deletions and/or translocations. The deletion and translocation breakpoints define the physical segments. Because radiation rather than genetic recombination breaks the linkage between loci, physical segments are generated, which do not exclude recombination-poor areas along the whole chromosome. The distances between markers are estimated by calculating the probability of any pair of markers being separated. The distances are expressed in centiRays. We are developing a radiation hybrid mapping system for maize chromosomes based on oat-maize radiation hybrids generated from a set of oat-maize monosomic chromosome addition lines.

The principle for the production of oat-maize chromosome addition lines has been described previously (Riera-Lizarazu et al., TAG 93: 123-135, 1996). From more than 25,000 crosses of maize cv. Seneca 60 to the oat cvs. Starter, Gaf Park, Preakness, Kanota, Sun II, Stout, and an experimental hybrid (MN97201-1 x MN841801-1), we have rescued about 2000 embryos by in vitro culture on 1/2 MS medium. About 12 % of the F1 embryos germinated, and 175 of them grew to vigorous plantlets which were analyzed by molecular and cytogenetic means. The majority of these F1s were haploid oat plants without maize chromosomes. Approximately 36 % of these F1s were partial hybrids, however, retaining one or more maize chromosomes (Figure 1). We observed a maximum of six retained maize chromosomes in addition to the haploid oat complement in one plant. Most plants had lower numbers of added maize chromosomes (Figure 1). The generally low numbers of retained maize chromosomes among the recovered F1 hybrids indicate a competitive advantage for cells having eliminated maize chromosomes. The specific chromosomes and their allelic constitutions lead to distinct phenotypes.

Figure 2 summarizes the identity of the added maize chromosomes and their frequencies in the F1 hybrid population. A total of 87 maize chromosome additions have been identified to date. In 37 F1 plants a single maize chromosome was retained along with the haploid oat complement. All ten maize chromosomes have been recovered as single monosomic additions. Maize chromosome 9 was most frequent among the single monosomic additions. Chromosome number 5 was slightly less frequent as a single addition, but most frequent in combination with other chromosomes. Apart from maize chromosome number 3, all of the other chromosomes also were found together in combination with other chromosomes added to the haploid oat complement. There was no obvious preferential combination of the maize chromosomes among the multiple

Figure 1: Frequencies of the number of maize chromosomes retained in 175 oat- maize F1 plants.

Figure 2: Frequencies of 87 identified maize chromosomes as single and multiple monosomic additions in 56 oat-maize F1 plants.
additions. The double monosomic additions involved the combinations of the maize chromosomes 5 + 9, 5 + 8, 1 + 5, 2 + 6, 1 + 8, 2 + 5, 4 + 7, 5 + 6, 4 + 6, and twice 2 + 7. Triple monosomic additions included the chromosome combinations 6 + 7 + 9, 2 + 7 + 8, 2 + 6 + 9, 2 + 5 + 8, 1 + 4 + 5, and 1 + 5 + 8. In one F1 plant we identified the added maize chromosomes 1 + 2 + 8 + 9. And one F1 plant had the maize chromosomes 1 + 4 + 5 + 7 + 8 + 10. The most important result is that we detected for the first time an entire set of oat-maize chromosome addition plants, which carry singly each of the ten maize chromosomes.

Haploid oats are known to produce up to 40 % seed set (Davis. MS Thesis, University of Minnesota, 1992). As it occasionally occurs with haploids of other allopolyploid and amphidiploid cereals, e.g. wheat and triticale, haploid oats can produce doubled haploid or even aneuploid (e.g. monosomic or nullisomic) offspring by completely or partially unreduced gametes. The high seedset freguency in oats, however, is mainly caused by restitution of meiosis I. Meiotic restitution results in unreduced spores, which eventually generate fertile gametes. Our haploid F1 hybrids with or without maize chromosome additions occasionally underwent the same or very similar processes. As a result, hexaploid oat plants with nullisomic, monosomic, or disomic additions of maize chromosomes were formed among the F2 genotypes. We recovered disomic additions for maize chromosomes 2, 3, 4, 6, 7 and 9 and a monosomic addition for maize chromosome 8. Details on this material and its availability are presented in Table 1.

To produce radiation hybrid lines a disomic chromosome 9 addition line was backcrossed to oat to generate a line monosomic for maize chromosome 9. These seed were irradiated, grown to maturity, and allowed to self pollinate. Seed from individual panicles were planted and tested for the presence of maize DNA. Approximately 10% of the progeny carried maize DNA. Lines carrying maize DNA were characterized cytologically and with molecular markers. We have made over 40 radiation hybrid lines for chromosome 9, and are developing radiation hybrid lines for chromosomes 2 and 4.

At present we are working with 38 radiation hybrid lines for chromosome 9. Our first step has been to map markers previously mapped to either the consensus SSR map or the 1998 UMC map.

Table 1. Oat-maize single monosomic and disomic addition lines.

	F1 hybrids				Availability	
Added maize chromosome	Oat background	Before 1999	In 1999	Offspring F2, F3, F4,	Seed	DNA
1	Preakness Starter Gaf Park	1	1 2	0	None None None	Plenty Limited Limited
2	Starter	4	3	> 100	Plenty	Plenty
3	Sun II Preakness Starter	1	1	> 100 29 0	Plenty None None	Plenty Limited Limited
4	Starter	5	1	> 100	Plenty	Plenty
5	Starter Gaf Park Hybrid	1?	3 2 2	0	None None None	Limited Limited Limited
6	Starter Dumont	1	1	> 100 > 100	Plenty Plenty	Plenty Plenty
7	Gaf Park Starter-	1	5	> 100 > 100	Plenty Plenty	Plenty Plenty
8	Gaf Park Starter	1 1?	23	> 100*	None None	Limited Limited
9	Starter Kanota Gaf Park	2	6 1 2	> 100 1 30	Plenty None None	Plenty Limited Limited
10	Gaf Park	11	1		None	Limited

* monosomic offspring only

This allows us to look at the distribution of breaks along chromosome 9 and provides a basis for future comparisons between the radiation hybrid map and other chromosome 9 maps. The first 56 markers placed on the map defined 41 segments. Many more markers need to be mapped before we can be confident that the chromosome breaks are adequately defined.

A major effort this year has been to develop new markers. Usina EST sequences from ZmDB (http://www.zmdb.iastate.edu/), primers have been designed and tested. To date 385 primers were developed that amplified maize DNA and distinguished maize from oat sequences. These primers have been mapped to chromosome. Using our new oat-maize addition lines a total of 178 EST sequences have been allocated to chromosome 2 (27 ESTs), chromosome 3 (34 ESTs), chromosome 4 (46 ESTs), chromosome 6 (28 ESTs), and chromosome 9 (23 ESTs). Thirty-four EST markers were located to chromosome 9: 11 of these markers were also located on one or more of the other chromosomes tested. These markers are being placed onto the chromosome 9 radiation hybrid panel. 20 ESTs showed loci on more than one chromosome tested. One EST sequence, AI737657, mapped at the Sh1 locus. A BLAST search revealed that this EST was a Sh1 sequence.

The data for 385 EST primer sequences, their chromosome allocation and the description of the radiation hybrid lines will soon be available on our website: http://www.agro.agri.umn.edu/rp/genome/

This material is based upon work supported by the National Science Foundation under Grant No. 9872650.

SAN DIEGO, CALIFORNIA University of California

barren stalk1 is epistatic to teosinte branched1

--Ritter, MK, Padilla, CM, Schmidt, RJ

Plants homozygous for the recessive *barren stalk1* (*ba1*) mutation, first described by Hofmeyr in 1930, are characterized by having a tassel which lacks branches and spikelets. These plants also have no ears or tillers. To establish whether the lack of tillers in *ba1* mutants is due to true suppression of vegetative branching or to background effects, a double mutant was generated with *teosinte branched1* (*tb1*), a mutation which causes excess tillering.

Plants heterozygous for the *ba1* mutation were crossed to homozygous *tb1* mutants and the resulting F1 progeny were then selfed. F2 populations were screened to determine which ones segregated for the *ba1* and *tb1* phenotypes. Two hundred and thirty seven F2 progeny were genotyped at the *tb1* locus by Southern blots with a genomic *tb1* probe. (Probe kindly provided by John Doebley). Of these 237 F2 plants, 47 were *tb1* homozygous mutants. Eleven of those 47 *tb1* mutants also showed the *ba1* phenotype. Due to the fact that these *ba1/tb1* double mutant plants shed a small amount of pollen, one of these 11 plants was crossed to a heterozygous *ba1* tester to confirm the presence of the *ba1* allele. Ten progeny were planted from this cross, of which 6 showed the *ba1* phenotype.

The *tb1/ba1* double mutant is indistinguishable from the *ba1* single mutant (Figure 1, page 62). Thus it appears that *ba1* is epistatic to *tb1* and completely suppresses lateral branching in both the vegetative and inflorescence meristems.

Figure 1

Wild Type

teosinte branched1

tb1/ba1 double mutant

SHANGHAI, CHINA Chinese Academy of Sciences

Genetic diversity and its relationship to hybrid performance and heterosis in maize as revealed by AFLPs and RAPDs

--Wu, M

The recent advances in genome research have generated considerable interest in predicting hybrid performance using molecular markers in crop breeding programs. PCR-based techniques, which include AFLPs and RAPDs, have been proven useful in genetic diversity studies. In the study presented here, AFLPs and RAPDs were employed to study the genetic diversity among seventeen elite inbred lines widely used in hybrid maize breeding programs in China. The relationship between genetic distance and hybrid performance in a diallel set of crosses between them was assessed.

Of the 90 RAPD primers used to amplify DNA from the seventeen lines, 73 (81%) revealed polymorphisms among the seventeen parents. These 73 primers generated a total of 453 non-redundant polymorphic bands with an average of 6.2 and a range of 3 RAPD profiles. Among the 453 RAPD variants, 10 (2.2%) were present in only one of the seventeen parents. For AFLP analysis, sixteen primer combinations were used to assay the seventeen inbreds. These primer combinations revealed approximately 1038 selectively amplified DNA fragments ranging in size from 80 to 900 bp nucleotides. Among 1038 AFLP variants, 621 (59.8%) were polymorphic bands with an average of 38.8 and a range of 30 to 59 per AFLP primer combination, 75 (7.2%) were detected in only one of the seventeen parents. These results suggest that AFLPs can reveal a large number of polymorphisms in a more efficient way compared with RAPDs.

Nei's genetic distance (GDs) were computed for all 136 combinations of the seventeen parents based on AFLP and RAPD markers. GDs based on AFLP data among the seventeen parents ranged from 0.19 to 0.56, with an average of 0.43 across all 136 pairs. GDs based on RAPD data among the seventeen parents ranged from 0.09 to 0.67, with a mean of 0.59 across all 136 pairs. These results indicate that GDs based on AFLP data were significantly different from GDs based on RAPD data used in this study.

Cluster analysis based on the AFLP data and RAPD data resolved the seventeen parental lines into five major groups that were consistent with pedigree information, GD values among groups were significantly greater than that within group. Dendrograms were also constructed on the basis of either 21 AFLP or 453 RAPD variants and compared with the dendrogram generated from the entire data set of AFLPs and RAPDs. The AFLP-based dendrogram had quite similar clustering structure as the dendrogram developed from the RAPD data. The only discrepancy was that 1301 and P167 (1301 and P167 were synthetical-bred inbreds) were in different groups. These results suggest that AFLP and RAPD markers used in this study can assign genotype to different heterotic or subspecific groups.

The correlations of genetic distance with the F1 yield (F1Y)/mid-parent heterosis (MPH)/specific combining ability (SCA) of the 136 hybrids are presented in Table 1.

Table 1. Correlations of genetic distance (GD) based on AFLP and RAPD data respectively, with F1 yield (F1Y)/mid-parent heterosis (MPH)/specific combining ability (SCA) of grain yield for 136 crosses.

Variables	F1Y	MPH	SCA
GD-AFLP	0.4352**	0.3453**	0.4732**
GD-RAPD	0.4018**	0.3247**	0.4217**
"Significant at 0	01 probability level		

As shown in Table 1, genetic distances based on AFLP and RAPD data were significantly correlated with F1 yield. The correlation coefficient(r) was 0.4352 for AFLPs and 0.4018 for RAPDs. The correlation coefficients of GDs calculated for AFLP and RAPD data with mid-parent heterosis for 136 hybrids were highly significant. Genetic distance based on AFLP and RAPD data were also correlated with specific combining ability (SCA)(P<0.01). Finally, it was worth noting that correlation between GD computed from AFLP data and F1Y/MPH/SCA were higher than those based on RAPD data.

In summary, the results from the current study indicate that AFLP and RAPD offer a reliable and effective means of assessing genetic variation and of assigning maize inbred lines into different heterotic groups and thus reduce the field work associated with making cross and hybrid field testing. In particular, AFLP technique may allow maize breeders to predict combinations of lines that result in high-yielding, single-cross hybrids.

SOFIA, BULGARIA

Institute of Genetics, Bulgarian Academy of Sciences

Studying the possibilities for transfer of regeneration capability in vitro via classical crosses

--Nedev, T, Kruleva, M, Krapchev, B

We have previously reported (MNL 72:76) about good regeneration capability of in vitro culture of inbred maize line A619. The protocol of embryo isolation, media used, and the in vitro tissue culture procedures were published there too. The aim of the present work was to verify the possibility of transferring the trait "good capability" from line A619 to hybrid combinations A619 x M320 or M320 x A619 (A619 as a female and male partner). The results obtained for the two combinations are presented in Table 1.

Table 1. Regeneration frequencies of A619 x M320 or M320 x A619 hybrids.

Genotype	Number of embryos with morphogenesis	Number of regenerated plants
A619 x M320	109	71
M320 x A619	62	43

The results differed in dependence on the line used as a female parent. It is obvious that maternal genotype A619 had a valuable effect on the frequency of plants produced in vitro.

We speculate that a factor determining these results may be the importance of combination between nucleus and cytoplasm. It is true for the case where A619 is the female partner, which is not the situation with A619 being the male partner, where there is only a nucleus.

The viability of regenerated plants was not high. During development part of the plants did not elongate and their appearance was like that established by Pilu et al. (MNL 73:69). Future experiments will elucidate differentiation in other traits of hybrids obtained in a "classical crosses" way.

This work was supported by grant B-602 from the National Fund of Scientific Investigations of the Bulgarian Ministry of Education and Science.

Genetic relationship among cytoplasm analogs and morphogenic potential of maize inbreds

--Nedev, T, Kruleva, M, Krapchev, B

Three maize inbred lines, A654, B37, Wf9 and their analogs, possessing cytoplasm of S and C type (A654 S, A654 C; B37 S, B37 C; Wf9 S, Wf9 C) were used as experimental materials. We set up this survey to answer the question whether there is any relationship between different cytoplasm and morphogenic potential of maize inbreds. Maize inbreds used in this experiment have different potential for callus formation and plant regeneration (Nedev et al. MNL 72:76). Data for media and procedures for

cultivation are available in the same paper. A summary of the obtained results is given in the Table 1.

Table 1. The plant regeneration of maize inbreeds with cytoplasm analogies. Summary. (%).

A654	A654S	A654C	B37	B37S	B37C	Wf9	W9S	Wf9C
33.1	41.4	18.5		1.3	2.5	4.8	6.6	1.5

As is shown in the table, the frequency of regeneration was the highest in A654 S. The reason for differences in regeneration potentials among inbreds is clear - different frequencies of genes controlling regeneration. The question about relations between A 654 (normal cytoplasm) and their male sterile analogs A654 S, A654 C in respect to their regeneration potential is more complicated. Maybe the explanation should be searched for in the connections between nucleus and cytoplasm at the physiological and genetic levels. A genetic aspect may be very attractive if one speculates about the relationship (or lack of relationship) between nucleus genes and genes located in cytoplasm - mitochondria, chloroplasts.

This work was supported by grant B-602 from the National Fund of Scientific Investigations of the Bulgarian Ministry of Education and Science.

TAIPEI, TAIWAN, REP. OF CHINA Academia Sinica, National Taiwan University KAOHSIUNG, TAIWAN, REP. OF CHINA National Sun Yat-sen University BUFFALO, NEW YORK State University of New York

Multi-photon excited fluorescence and absorption properties of maize tissues

--Lin, B-L, Kao, F-J, Sun, C-K, Cheng, P-c

In order to interpret the images obtained with confocal and multi-photon fluorescence microscopy, it is important to obtain the basic absorption and autofluorescence properties of maize tissues, in particular, the multi-photon excited fluorescence spectra. It has been demonstrated that *Arabidopsis* mesophyll protoplasts and leaves exhibit significantly different autofluorescence between single- and two-photon excitation (Cheng et al., Proc. Optics and Photonics Taiwan, 1099-1101, 1999; Cheng et al., SPIE Proceedings 3919, 2000; Cheng et al., Micron, 2000). A 495nm two-photon excited fluorescence emission peak was detected from *Arabidopsis* protoplasts when illuminated with high intensity 760nm IR pulse. This green emission is very close to the emission peak of GFPs, hence, may interfere with the detection of GFP in plant cells under multi-photon fluorescence microscopy.

Leaves from Ohio43 inbred were used in this study. Figure 1 shows the absorption properties of normal leaf and waterlogged leaf. Note the normal leaf shows a significantly higher optical density as a result of light scattering from air chambers within the leaf. The lower optical density in the longer wavelength region favors the use of multi-photon fluorescence microscopy for the study of thicker tissues.

Figures 2 and 3 show two-photon excited fluorescence spectra of both whole leaf and the acetone extract of the leaf. When 780nm excitation was used, two major fluorescence peaks (678nm and 512nm) were observed in whole leaf. In contrast, fluorescence emission at 512nm and 668nm was observed in leaf acetone

Figure 2.

extract. Two-photon fluorescence emission at 686nm was detected from leaf blade under 1240nm illumination. A second red fluorescence shoulder was observed around 740nm. Leaf acetone extract shows similar fluorescence peaked at 671nm and a longer shoulder around 730nm. The green fluorescence (512nm) observed in the 800nm excited spectra was absent due to the longer wavelength of the illumination (1240nm) which is not capable of producing 2-photon excitation at this wavelength. Although three-photon excitation is possible, no green fluorescence was observed in our current set-up.

Figure 3.

Two-photon fluorescence spectra were obtained by using a Coherent Verdi pumped Spectra-Physics Tsunami mode-locked Ti-sapphire laser operated at 780nm with 100fs IR pulse. The 1240nm IR excitation was obtained from a Spectra-Physics Millennium IR (1064nm) pumped Chromium-doped Forsterite (home-built) laser operated at 1240nm with a pulse width of 130fs.

> TIFTON, GEORGIA USDA-ARS and University of Georgia COLUMBIA, MISSOURI USDA-ARS

Identification of a gene at the syntenic *sh2-a1* region in maize --Guo, BZ, Butron, A, Li, RG, Zhang, ZJ, Widstrom, NW, McMullen, MD, Lynch, RE

Using common DNA probes in comparative genetic mapping of cereal crops, a number of research groups have demonstrated an impressive degree of synteny, genes in related species tending to be collinear in order on chromosomes, at the genetic level (Gale and Devos, PNAS 95:1971-1974; Feuillet and Keller, PNAS 96:8265-8270, 1999). Genetic mapping of sorghum, maize, rice and other species has revealed the existence of conserved gene content, gene

order, and gene sequence in the family *Poaceae* (Devos and Gale, Plant Mol. Biol. 35:3-15, 1997; Bennetzen et al., PNAS 95:1975-1978, 1998). In the family *Poaceae*, rice has the smallest genome. The rice genetic map can be divided into sets of linked genes known as linkage blocks, and these blocks can be rearranged to form the maps of other cereals (Moore et al., Curr. Biol. 5:737-739, 1995; Devos and Gale, Plant Mol. Biol. 35:3-15, 1997). The chromosomes of other species in this family can be arrayed or aligned in concentric circles such that a radial line from the central species, rice, passes through regions with similar genic content in other species. This integrated grass genome map allows genetic information from different species to be combined, thus providing a large potential marker/gene pool. The collinearity of genes in the family *Poaceae* provides a unique tool for gene discovery and gene isolation.

Dr. Bennetzen's group has demonstrated microcolinearity in the *sh2-a1* homologous regions of rice, sorghum, and maize (Chen et al., PNAS 94:3431-3435, 1997) and has completely sequenced this homologous region in rice (Chen and Bennetzen, Plant Mol. Biol. 32:999-1001, 1996) and sorghum (Chen et al., Genetics 148:435-443, 1998). A putative transcription factor gene X has been identified in this *sh2-a1* homologous region in rice and sorghum in Bennetzen's lab. At the nucleotide level, gene X of rice and gene X of sorghum share 82% identity of exons and 57% identity of introns. The order and orientation of the genes are conserved among rice and sorghum as demonstrated by Bennetzen's group. The questions are whether gene X exists in maize and if so, where is its position in the maize genome.

To answer these questions, we used maize inbred SC102 and inbred B31857 in this study. The SC102 is a dent corn with A1/A1 genotype and high silk maysin concentration. Inbred B31857 with shrunken-2 (sh2) endosperm is an a1/a1 genotype and has no silk maysin (Guo et al., J. Econ. Entomol. 92:746-753, 1999). A pair of primers were synthesized based on the homologous region of gene X in rice and sorghum (Chen et al., Genetics 148:435-443,1998, GenBank accession number AF010283; Chen and Bennetzen 1996, Plant Mol. Biol. 32:999-1001, GenBank accession number U70541) and used to amplify maize genomic DNA. PCR was performed on 50 ng of template DNA, in a final volume of 50 µg containing 0.2 mM of each dNTP (Pharmacia), 0.3 µM of each primer, and 2.5 U of AmpliTag Gold DNA polymerase (PE Applied Biosystems) in the buffer supplied by the enzyme manufacturer. The DNA amplification reaction was carried out using a GeneAmp PCR System 9700 Thermocycler (PE Applied Biosystems) under the following conditions: pre-PCR held 10 min at 94 C; PCR, 40 cycles of 45 s at 94 C, 45 s at 60 C, and 2 min at 72 C; post-PCR held 7 min at 72 C and kept at 4 C. We cloned the Taq-amplified PCR product using the TOPO TA Cloning Kit for Sequencing (Invitrogen, Carlsbad, CA). DNA sequencing was done using an ABI Prism-377 automatic sequencer. The search for homologous sequences at the GenBank databases was carried out using the BLAST program.

RT-PCR was done by the same primers using the Access RT-PCR system (Promega). Northern and Southern analyses were done by using the PCR product as probe to detect the gene X transcript and gene copy number. Probes were prepared by random-primer labeling of the template DNA with $[\alpha^{-32}P]dCTP$ using the High Prime labeling kit according to the manufacturer's instructions (Ambion). After hybridization, blots were exposed to a phosphor screen which was monitored using a PhosphorImager (Cyclone Storage Phosphor System) from Packard Instrument Company. The software package ImageQuant Version 3.3 from Molecular Dynamics was used to analyze and quantify the hybridization signals. To map this gene X in relationship with location of *sh2* and *a1*, we used a F2 population (300 plants) derived

Figure 1. PCR (A) and RT-PCR (B) analyses, using the primers designed based on the sequences (GenBank accession number AF010283 and U70541).

Figure 2. Northern blot analysis of gene expression in leaf, cob, and silk. The blot was hybridized with the cloned PCR product (Fig. 1A). Equal loading was verified by visualizing rRNA in the gel stained with ethidium bromide (bottom).

65

Figure 3. Southern blot analysis of PCR clone with BamHI (B), Dral (D), Eco RI (EI), EcoRV (EV), HindIII (H), or Xbal (X) digested genomic DNA of maize.

from inbreds SC102 and B31857. Restriction fragment length polymorphism (RFLP) analyses were performed with probes specific for *a1*, *sh2*, and the cloned X-gene. The linkage analysis was done using the MAPMAKER program.

Using primers designed from gene X of rice and sorghum, we amplified and cloned a PCR product with molecular weight of 1.4 kb from maize leaves of SC102 and B31857 (Fig. 1A). The DNA sequence of the cloned PCR product has been deposited in GenBank database under accession number AF136530. This seauence has more than 90% and 80% homology with the 5'-end sequence of the putative X gene in sorghum and rice, respectively. Transcripts of the gene X in maize were detected by reverse transcriptase-PCR (Fig. 1B) with primers that yield a 1.4 kb PCR product from genomic DNA (Fig. 1A). We detected a gene transcript (1 kb) in leaves, cobs, and silks using RT-PCR (Fig. 1B). Northern analysis also revealed the X-gene transcript of about 2.3 kb in leaves, cobs, and silks (Fig. 2). This X-gene identified in maize is a single copy gene (Fig. 3). Mapping and linkage analysis showed this X gene is closely linked to loci of sh2 and a1, and placed in the same linkage group with sh2 and a1. Therefore, the X gene homologous to rice and sorghum exists in the maize genome. The position of the X gene in maize is closely linked with sh2 and a1 on chromosome 3. The functional feature of this X-like gene identified in sh2-a1 region in maize should be investigated in the future.

TUCSON, ARIZONA University of Arizona

Npi402 and ncsu1 are identical ; inra1 (tmp) maps upstream of the b promoter

--Stam, M, Lavin, T, Chandler, VL

The analysis of intragenic recombinants showed that *b* is transcribed, $5' \rightarrow 3'$, from the telomere towards the centromere and that the sequences required for paramutation of the *b* gene map

upstream of the b coding region (Patterson et al., Genetics 140:1389, 1995). To further define the sequences involved in paramutation we wanted to identify recombination events between the B' (paramutagenic) and B-P (non-paramutagenic) alleles further upstream of the b gene. To simplify the screen for recombinants we needed to convert RFLP markers tightly linked and upstream of b into a PCR assay to detect sequence length polymorphisms (SLPs) linked to the different b alleles. The RFLP markers npi287A, umc61, ncsu1 and npi402, which map 1.1 cM upstream of b оп chromosome 2 S (www.agron.missouri.edu/images/bnlc2.jpg), were sequenced. Two markers, ncsu1 and npi402, were found to have exactly the same sequence and therefore are the same RFLP marker. Primers designed to amplify the genomic sequences corresponding to npi287A, umc61, ncsu1/npi402 did not reveal any SLP between B' and B-P. No further experiments were performed with these markers.

The map UMC 98 2 showed inra1 (tmp) mapped to 1.2 cM 3' of umc61; inra1 was not mapped relative to b, however. Southern analysis using DNA from B', B-P and three B-P//B' recombinant alleles (recombinations verified by PFGE analysis) showed that all three B-P//B' alleles had the B-P inra1 RFLP, while B' had another sized fragment (not shown). This suggested that inra1 is located upstream of b and could be used to look for a PCR SLP between B' and B-P. Tmp is an mRNA for a transmembrane protein that is highly conserved. We hypothesized that SLPs might be present within the introns of the tmp alleles linked to B' and B-P. To predict the intron positions in the tmp gene, the protein sequence was used to search the database for homologous genes. The genomic DNA sequence of the homologous Arabidopsis thaliana water channel-like protein (EMBL accession nr. CAA20461) contained three introns. Protein sequence alignment between the translated maize tmp cDNA and the Arabidopsis protein predicted the intron positions in the maize gene. Primers surrounding the predicted third intron gave rise to different sized PCR products for the tmp alleles linked to B' and B-P.

Sequence analysis of both PCR products identified multiple deletions and insertions in the tmp intron 3 between the alleles linked to B' and B-P. Primers were designed that only amplified tmp sequences linked to B-P. This enabled us to screen for recombination events upstream of the b promoter. The B' allele (colorless seeds due to B' promoter proximal region), flanked with the homozygous recessive phenotypic markers gl2 (19 cM 5' of b) and wt (11 cM 3' of b), was combined with the B-P allele (purple seeds), flanked with the wild-type alleles of gl2 and wt. The F1 was crossed to gl2 B-I wt plants (colorless seeds); colorless seeds were planted and screened for a recombination event upstream of b using the *gl2* marker. 1861 seedlings wild-type for the marker gl2, were tested for a recombination event near to b using the B-P specific primers on pooled DNA samples. 18 recombinant alleles (0.97% of 1861 seedlings) were identified using PCR and verified by Southern blot analysis. All 18 alleles have wt as the 3' marker, consistent with a single recombination event between tmp and b. These results show that the tmp allele maps 0.18 cM upstream of b. This was calculated by multiplying the 19 cM between gl2 and b by the % of recombinants obtained within this region.

URBANA, ILLINOIS Maize Genetics Cooperation • Stock Center

Additional linkage tests of non-waxy (*Waxy1*) reciprocal translocations involving chromosome 9 at the MGCSC --Jackson, JD, Stinard, P, Zimmerman, S

Approximately 1 acre each year is devoted to the propagation of the large collection of A-A translocation stocks. In this collection is a series of *Waxy1*-linked translocations that are used for mapping unplaced mutants. Each translocation is maintained in separate M14 and W23 inbred backgrounds which are crossed together to produce vigorous F1's to fill seed requests. Over the years, pedigree and classification problems arose during the propagation of these stocks. We have been able to sort through the problem ones, and can now supply good sources proven by linkage tests to include the correct translocated chromosomes.

Previously we reported the linkage results for some of these stocks (MNL72:79-81; MNL73:86-88). Below is a summary of additional translocation stocks we have completed testing.

Table 1. Wx1 T1-9(4995) (1L.19; 9S.20)

A) The M14 source showed linkage of wx1 with bz2.

2 point linkage data for bz2-Wx1 T1-9(4995)

Testcross: [Bz2 Wx1 1-9(4995) x bz2 wx1 N] x bz2 wx1 N

source:94-1863-2^M14

Region	Phenotype	No.	Totals	
0	+ Wx	581		
	bz wx	537	1118	
1	bz Wx	138		
	+ WX	176	314	

% recombination bz2-Wx1 = 21.9±1.1

B) The W23 source showed linkage of wx1 with 11 & bz2.

1) 2 point linkage data for *bz2-Wx1* T1-9(4995) Testcross: [*Bz2 Wx1* 1-9(4995) x *bz2 wx1* N] x *bz2 wx1* N

source:94-1865-3^W23

Region	Phenotype	No.	Totals	
0	+ Wx	485		
	bz wx	425	910	
1	bz Wx	148		
	+ WX	115	263	

% recombination bz2-Wx1 = 22.4±1.2

2) 2 point linkage data for f1-Wx1 T1-9(4995) Testcross: [F1 Wx1 1-9(4995) x f1 wx1 N] x f1 wx1 N

source:94-1865-3^W23

Region	Phenotype	No.	Totals
0	+ Wx	1919	
	fwx	1726	3645
1	f Wx	327	
	+ WX	251	578

% recombination /1-Wx1= 13.7 ±0.5

.....

Table 2. Wx1 T4-9e (4S.53; 9L.26)

A) The M14 source showed linkage of wx1 with su1:

2 point linkage data for su1-Wx1 T4-9e Testcross: [Su1 Wx1 T4-9e x su1 wx1 N] x su1 wx1 N

source:87-987 / 986 Bulk ^M14

Region	Phenotype	No.	Totals	_
0	+ Wx	788		_
	SU WX	684	1472	_
1	su Wx	81		
	+ WX	22	103	_

% recombination su1-Wx1= 6.5±0.6

B) The W23 source showed linkage of wx1 with su1.

2 point linkage data for su1-Wx1 T4-9e Testcross: [Su1 Wx1 T4-9e x su1 wx1 N] x su1 wx1 N

source:87-985 x sib ^W23

Region	Phenotype	No.	Totals
0	+ Wx	840	
	SU WX	782	1622
1	su Wx	194	
	+ WX	34	228

% recombination su1-Wx1= 12.3 ±0.8

Table 3. Wx1 T9-10b (9S.13; 10S.40)

A) The F1 source showed linkage of wx1 with bf2:

2 point linkage data for bf2-Wx1 T9-10b

Testcross: bl2 wx1 N x [Bl2 Wx1 T9-10b x bl2 wx1 N]

source:87-1050 / 1049 bulk (1)

Region	Phenotype	No.	Totals
0	+ Wx	729	
	bf wx	610	1339
1	bf Wx	39	
	+ WX	41	80

% recombination bf2-Wx1=5.6±0.6

Additional linkage tests of *waxy1* marked reciprocal translocations at the MGCSC

--Jackson, JD, Stinard, P, Zimmerman, S

In the collection of A-A translocation stocks maintained at MGCSC is a series of *waxy1*-linked translocations that are used for mapping unplaced mutants. Also new *wx1*-linked translocations are being introduced into this series and are in a conversion program to convert each translocation to the inbred backgrounds M14 and W23. These inbreds are then crossed together to produce vigorous F1's to fill seed requests. Over the years, pedigree and classification problems arose during the propagation of these stocks. We have been able to sort through the problem ones, and can now supply good sources proven by linkage tests to include the correct translocated chromosomes. Additional pedigree information on bad sources is available should anyone want to check on sources supplied to them previously by the Stock Center.

Previously we reported the linkage results for some of these stocks (MNL72:81-82; MNL73:88-89). Below is a summary of additional translocation stocks we have completed testing. Additional translocation stocks will be tested as time allows.

Table 1. wx1 T1-9c (1S.48; 9L.22)

A) The W23 source showed linkage of wx1 with P1-ww:

2 point linkage data for P1-ww-wx1 T1-9c Testcross: [P1-wr Wx1 N x P1-ww wx1 T1-9c] x P1-ww wx1 N wx1

source:94-1891-1*W23

Region	Phenotype	No.	Totals
0	P1-wr Wx	62	
	P1-ww wx	72	134
1	P1-ww Wx	10	
	P1-wr wx	3	13

......

Table 2. wx1 T1-9(4995) (1L.19; 9S.20) COOP source

A) The new M14 c/o sources showed linkage of wx1 with bz2 & f1.

1) 2 point linkage data for bz2-wx1 T1-9(4995)

Testcross: [Bz2 wx1 1-9(4995) x bz2 wx1 N] x bz2 wx1 N

source:94-1845-1c/o^M14

Region	Phenolype	No.	Totals	
0	bz Wx	595	10000000	
	+ WX	693	1288	
1	+ Wx	222		
	bz wx	191	413	

% recombination bz2-Wx1 = 24.3±1.0

Testcross: *bz2 wx1* N x [*bz2 wx1* N x *Bz2 wx1* 1-9(4995)] source:94-1845-2c/o^M14

Totala
153
56

% recombination bz2-Wx1 = 26.8±3.1

source:94-1851-1c/o^M14

Region	Phenotype	No.	Totals	
0	bz Wx	177		
	+ WX	133	310	
1	+ Wx	71		
	bz wx	30	101	

% recombination bz2-Wx1 = 24.6+2.1

2) 2 point linkage data for f1-wx1 T1-9(4995) Testcross: [F1 wx1 1-9(4995) x f1 wx1 N] x f1 wx1 N

source:94-1845-1c/o^M14

Region	Phenotype	No.	Totals	
0	f Wx	830		
	+ WX	724	1554	
1	+ Wx	79		
	fwx	48	127	

% recombination $f1-Wx1=7.6\pm0.6$

Testcross:	[f1 wx1 N x	F1 wx1	1-9(4995)] x	f1 wx1 N
source:94-	1845-2c/o^N	114		

Region	Phenotype	No.	Totals	
0	f Wx	760		
	+ WX	704	1464	
1	+ Wx	87		
	fwx	60	147	
9/ roombinatio	n #1 Met 01.07			

% recombination 11-Wx7= 9.1±0.7

Testcross: [F1 wx1 1-9(4995) x f1 wx1 N] x f1 wx1 N source:94-1851-1c/o^M14

Region	Phenotype	No.	Totals	
0	f Wx	975		
	+ WX	970	1945	
1	+ Wx	95		
	fwx	66	161	

% recombination f1-Wx1= 7.6±0.6

Testcross: [f1 wx1 N x F1 wx1 1-9(4995)] x f1 wx1 N

source:94-1851-2c/o^M14

Region	Phenotype	No.	Totals	
0	f Wx	727		
	+ WX	662	1389	
1	+ Wx	82		
	f wx	35	117	

% recombination f1-Wx1= 7.8±0.7

B) The W23 source showed linkage of wx1 with bz2 & f1.

1) 2 point linkage data for bz2-wx1 T1-9(4995) Testcross: bz2 wx1 N x [bz2 wx1 N x Bz2 wx1 1-9(4995)]

source:84H-2410-4^W23

Region	Phenotype	No.	Totals	
0	bz Wx	329		
	+ WX	233	562	
1	+ Wx	108		
	bz wx	93	201	

% recombination $bz2-Wx1 = 26.3\pm1.6$

2) 2 point linkage data for 11-wx1 T1-9(4995) Testcross: [11 wx1 N x F1 wx1 1-9(4995)] x 11 wx1 N

source:84H-2410-4^W23

Region	Phenotype	No.	Totals	
0	f Wx	1111		
	+ WX	975	2086	
1	+ WX	85		
	fwx	52	137	

% recombination f1-Wx1= 6.2±0.5

C) The new Sisco c/o source showed linkage of wx1 with bz2.

1) 2 point linkage data for bz2-wx1 T1-9(4995) Testcross: [bz2 wx1 N x Bz2 wx1 1-9(4995)] x bz2 wx1 N

source:94-1841-9c/o^Sisco

Region	Phenotype	No.	Totals	
0	bz Wx	714		
	+ WX	530	1244	
1	+ Wx	434		
	bz wx	247	681	_

% recombination bz2-Wx1 = 35.4±1.1

Table 3. wx1 T2-9c (2S.49; 9S.33)

A) TheF1 source showed linkage of wx1 with lg1gl2.

3 point linkage data for Ig1 gl2-wx1 T2-9c Testcross: [ig1 gl2 Wx1 N x Lg1 Gl2 wx1 T2-9c] x Ig1 gl2 wx1 N

......

source:93-432-2 x 433 ^F1

Region	Phenotype	No.	Totals
0	lg gl Wx	748	
	+ + WX	1289	2037
1	+ gi Wx	178	
	lg + wx	277	455
2	+ + Wx	115	
	lg gl wx	94	209
1+2	lg + Wx	9	
	+ gl wx	3	12

% recombination /g1-g12 =17.2+0.7

% recombination gl2-Wx1 =8.1±0.5

% recombination /g1-Wx1=24.9 ±0.8

B) The W23 source showed linkage of wx1 with lg1gl2:

3 point linkage data for 1g1 gl2-wx1 T2-9c Testcross: [lg1 gl2 Wx1 N x Lg1 Gl2 wx1 T2-9c] x lg1 gl2 wx1 N

source:87-838 x 839 ^W23

Region	Phenotype	No.	Totals
0	lg gl Wx	378	
	+ + WX	745	1123
1	+ gl Wx	105	
	lg + wx	159	264
2	+ + Wx	58	
	lg gl wx	64	122
1+2	lg + Wx	4	
	+ al wx	4	8

% recombination /g1-g12 =17.9±1.0

% recombination gl2-Wx1=8.6 \pm 0.7

% recombination /g1-Wx1=25.9±1.1

Table 4. wx1 T6-9(4505) (6L.13; 9ctr.)

A) The M14 sources showed linkage of wx1 with y1:

1) 2 point linkage data for y1-wx1 T6-9(4505) Testcross: [Y1 wx1 T6-9(4505) x y1 Wx1 N] x y1 wx1 N

source:93W-1411-3^M14

1.000.000		
1//		
194	371	
13		
6	19	
	194 13 6	194 371 13 6 19

source:94-1965-9c/o^M14

Region	Phenotype	No.	Totals	_
0	y Wx	955	100 A 100 A	
	+ WX	846	1801	
1	+ Wx	47		
	y wx	63	110	

% recombination y1-Wx1=5.8±0.5

source:95-1034-4 fr. 94-1965-9c/o^M14

Region	Phenotype	No.	Totals	
0	y Wx	736		
	+ WX	678	1414	
1	+ Wx	84		
	y wx	44	128	
% recombination	in y1-Wx1=8.3+0.7	44	120	-

200720004 1005 100/001414

Region	Phenotype	No.	Totals	_
0	y Wx	675		
	+ WX	571	1246	
1	+ Wx	31		
	y wx	33	64	

% recombination y1-Wx1=4.9±0.6

source:94-1965-1	1c/o^M14
	and the second sec

Region	Phenotype	No.	Totals	
0	y Wx	817		
	+ WX	832	1649	
1	+ Wx	48		
	V WX	40	88	

% recombination y1-Wx1=5.1 ±0.5

source:94-1965-12c/o^M14

Region	Phenotype	No.	Totals	
0	y Wx	684		
	+ WX	640	1324	
1	+ Wx	38		
	y wx	32	70	

% recombination y1-Wx1=5.0±0.6

B) The W23 sources showed linkage of wx1 with y1:

1) 2 point linkage data for y1-wx1 T6-9(4505) Testcross: [Y1 Wx1 N x y1 wx1 T6-9(45045)] x y1 wx1 N

source: 87-910 x sib bulk 1^W23

Region	Phenotype	No.	Totals	_
0	+ Wx	237		
	y wx	209	446	
1	y Wx	34		
	+ WX	31	65	

% recombination y1-Wx1=12.7±1.5

source:87-911-2 x sib^W23

Region	Phenotype	No.	Totals	
0	+ Wx	593		
	y wx	523	1116	
1	y Wx	136	a annound an	
	+ WX	134	270	

% recombination y1-Wx1=19.5±1.1

Testcross: y1 wx1 N x [Y1 Wx1 N x y1 wx1 T6-9(45045)]

source:87-911-2 x sib^W23

Region	Phenotype	No.	Totals
0	+ Wx	641	
	y wx	566	1207
1	y Wx	47	
	+ WX	60	107
0/ and a his stin		100	107

% recombination y1-Wx1=8.1 ±0.8

.....

A) The Robertson Accession source showed linkage of wx1 with j1:

2 point linkage data for j1-wx1 T8-9(6921)

Table 5. wx1 T8-9(6921) (8L.85; 9L.15)

Testcross: [J1 wx1 T8-9(6921) x j1 Wx1 N] x j1 wx1 N

source:90-563-1^Rob.

Region	Phenotype	No.	Totals
0	j Wx	39	
[+ WX	51	90
1	+ Wx	1	
	jwx	1	2
% roomhinatio	DIT MAL DOLLE	11	

% recombination j1-Wx1=2.2±1.5

Allelism testing of miscellaneous stocks in Maize COOP phenotype only collection

--Jackson, JD

This report summarizes allele testing of miscellaneous stocks characterized by phenotype only in the Maize Genetics COOP Stock Center collection. Some of these stocks have been found in other COOP stocks and some have been sent in by cooperators over the years. In most cases crosses were made between known heterozygotes and homozygous plants. Plants were scored at the seedling stage and again at maturity. Proposed new designations have been assigned to these alleles. These stocks have been increased and placed on the 2000 stocklist. It is expected that with further sorting and allelism testing of mutations characterized by phenotype only, additional alleles of characterized mutants will be discovered and placed in the main collection.

previous designation	allelism test with ra1	allelism test with ra2	new designation
ra*-Pl262495	positive (ra*/ra1= 24/24 pits.) (+/ra* // ra1=10/24)	negative	ra1-Pl262495
ra*-4889	negative (+/ra* // ra1=0/90)	negative (+/ra* // +/ra2=0/96)	

note: ra1-Pl262495 tassel has good ra1 phenotype. Ear has weak or no ramosa phenotype, gs1-Pl262495 may segregate in this stock.

note: ra*-4889 has ramosa-like tassel; ear has no ramosa phenotype.

Contraction of the second s		
positive (3 out of 3)		ps1-8205
allelism test with gi1	allelism test with gl8	new designation
positive (2 out of 2)	negative	gl1-dy
	allelism test with gl1 positive (2 out of 2)	allelism test with gl1 allelism test with gl8 positive (2 out of 2) negative

ote: gl1-dy traces back to Coop1953-159: Nelson 9947-4. This is also source of mn1 & dy1

Three-point linkage data for Og*-0376 Wx1 T9-10b on 10S --Jackson, JD

A new dominant yellow stripe stock maps to chromosome 10S near Oa1. This new mutation was isolated from a ms2 stock of E. B. Patterson. Its phenotype is very similar to Og1. Crosses were done with the waxy1-marked translocations: T9-10b and T8-9(043-6) to genetically determine its chromosomal loction.

The results of a three-point linkage test for Wx1, T9-10b and Og*-0376 are presented in Table 1. The linkage test was set up as a modified backcross. Wx and wx kernels from the backcross ears were planted in the field and the resulting plants were scored for yellow stripes and for the presence of the translocation by pollen sterility. The following linkage relationship was established: Wx1 - 9.7 - T9-10b - 3.2 - Og*-0376. Crosses are underway with Og1 to determine if Og*-0376 is an allele of Og1.

The results of a two-point linkage test for Wx1, T8-9(043-6) and Og*-0376 are presented in Table 2. The linkage test was also set up as a modified backcross. Wx and wx kernels from the backcross ears were planted in the field and the resulting plants were scored for yellow stripes. Results indicate no linkage of Oa*-0376 with either chromosome 9 or chromosome 8.

Region	Phenotype	No.	Totals
0	Wx N str	44	
	wx T gr	38	82
1	Wx T gr	4	
	wx N str.	4	8
2	Wx N gr	2	
	wx T str	0	2
1+2	Wx T str	0	
	wx N gr	1	1

Table 1. Three point linkage data for Og*-0376- Wx1-T9-10b.

% recombination T -Oa*=3.2+1.4

% recombination Wx1-*Og=11.8±3.3

Table 2. Two point linkage data for Og*-0376- Wx1-T8-9(043-6).

Testcross: og*	wx1 N x [Og*-0376 Wx	1 N x og* wx1 T8-	9(043-6)]
Region	Phenotype	No.	Totals
0	Wx str	15	
	wx gr	28	43
1	Wx gr	32	
	wx str	13	45

% recombination Wx1*-Og= 51.1±5.3

The brown kernel mutant of maize consists of a duplicate factor pair brn1 brn2

--Stinard, PS

The mutant brown kernel1 (brn1) was previously described by this author as being a simple Mendelian recessive mutation (Stinard. 1994. Maydica 39:273-278). Several mutant alleles have been isolated, and in order to study and compare them in a uniform genetic background, backcrosses of the different alleles were made to the inbred B73. Self-pollination of the F1 ears vielded considerably fewer than the expected 1/4 brown mutant kernels, approximating instead a 15:1 ratio of nonmutant to mutant kernels suggestive of a duplicate factor relationship. Further generations of backcrossing to B73 were done, and self-pollinations made after each generation of backcrossing also gave 15:1 ratios. At the fifth backcross generation, nonmutant kernels from 15:1 segregating ears of brn1-R were planted, and the resulting plants were self-pollinated and scored for brn1 mutant kernels. Four ears segregating 3:1 for nonmutant to brown kernels were identified; these ears would be presumably homozygous mutant for one of the two duplicate factors and segregating for the other. Nonmutant kernels from each of these 3:1 ears were planted and the resulting plants self-pollinated. Ears segregating 3:1 as well as ears with only nonmutant kernels were obtained. The latter ears would be expected to be homozygous mutant for one duplicate factor and homozygous nonmutant for the other duplicate factor; such ears will be referred to as single factor lines.

Crosses were made between all possible combinations of the single factor lines, and the F1 ears were self-pollinated to produce F2 ears. Intercrosses among three of the single factor lines yielded only nonmutant ears in the F2, but crosses of these three single factor lines with the fourth single factor line gave all F2 ears segregating 15:1. Thus, we succeeded in isolating the two duplicate factors as single factor lines. I name these two factors brn1 and brn2. brn1 is the factor that was located to the short arm of chromosome 3; brn2 remains unmapped.

The question remains as to why when brn1 was originally isolated, it was thought to be only a single factor. brn1 originally arose in a Robertson's Mutator population that had been propagated by crossing an active Mutator line alternate generations to the two non-Mutator hybrids Standard B70 (B77 X B79) and Standard Q60 (Q66 X Q67). Apparently, these two hybrid lines are already homozygous mutant for the other factor, brn2, so when the brn1 mutation occurred, it segregated 3:1 on a self-pollinated ear. Outcrosses of brn1 to Standard B70, Standard Q60, and M14/W22 all give F2's segregating 3:1, proving that they are homozygous for brn2. Similarly, the TB-3Sb line used in the armlocating cross as well as the linkage stocks used for mapping brn1 must also have been homozgyous for brn2. Crosses to inbred B73 gave F2's segregating 15:1; therefore B73 is homozygous nonmutant for both factors. Crosses are being planned to confirm the brn2 status of the Robertson hybrid lines.

brn1 brn2 is not the first duplicate factor pair discovered upon crossing a mutant into B73. Two other mutants previously considered to be single factor traits, su3 (now su3 su4; Stinard. 1997. MNL 71:83) and ns1 (now ns1 ns2; Scanlon and Freeling. 1995. MNL 69:23), were also shown to have duplicate factor inheritance upon crossing into B73.

John Deere green aleurone corn carries two R1-specific dominant inhibitors of aleurone color

--Stinard, PS

John Deere corn is a variety of novelty corn with green kernels (Sprague. 1994. MNL 68:105). In order to isolate the cause of the green pigmentation, we crossed the John Deere line to various colored aleurone stocks. We found that in crosses to stocks carrying specific alleles of R1 (members of the R1-d class and R1ch), dominant inhibition of aleurone color occurred in a pattern similar to that found for *Inhibitor of R1 (Inr1*; MNL 73:89-90). After backcrossing the John Deere line to our W23 ACR conversion, which carries an *R1* allele susceptible to inhibition, for several generations, a pattern emerged. Plants were obtained that produced ears giving a 15:1 ratio of colorless and pale to colored aleurone kernels, and whose outcrosses to our W23 ACR gave a 3:1 ratio of colorless and pale to colored aleurone kernels. These crosses are indicative of segregation for two dominant aleurone color inhibitors. Through several generations of selfpollination, we were able to obtain lines homozygous for each dominant inhibitor separately.

Allelism tests of these factors with *Inr1* were done by crossing these separate lines to a homozygous *Inr1-R* line, and then crossing the resulting F1 by our W23 ACR line. One of the factors produced only colorless kernels in a population of thousands of kernels, indicating probable allelism. (There is always the remote possibility that the factor is not allelic to *Inr1*, but is instead extremely tightly linked to *Inr1-*-these tests cannot rule out that possibility). The other factor produced ears segregating 3:1 for colorless to colored kernels in these crosses, indicating non-allelism with *Inr1*. We have given the second factor the temporary designation *Inr*-JD* until allelism with other known aleurone color factors can be ruled out. We are currently in the process of conducting linkage tests of *Inr*-JD* with a comprehensive set of *wx1*-marked A-A translocations.

We still do not have a precise explanation as to why John Deere corn is green. The R1 allele that is present in the John Deere line is apparently only weakly suppressed by the dominant color inhibitors. Perhaps the weak suppression of aleurone color occurring over the surface of yellow endosperm (John Deere is Y1 Y1) gives a green appearance through the combination of the light purple and yellow. Another possibility is the production of a unique anthocyanin pigment or some other chemical alteration in the aleurone cells that gives rise to a green color. Further analysis will need to be done in order to resolve this question.

Three-point linkage data for fl2 bm3 su1 on 4S

--Stinard, PS

The results of a three-point linkage test for *fl2*, *bm3*, and *su1* on chromosome 4 are presented in Table 1. The linkage test was set up as a modified backcross as indicated in Table 1. Kernels from the backcross ears were planted in the field and the resulting plants were self-pollinated and scored for *bm3*, and the self-pollinated ears were scored for the presence of *fl2* and *su1*. The

Table 1.	Three-point	linkage	data for	112 -	bm3 - su1.	
----------	-------------	---------	----------	-------	------------	--

Reg.	Phenotype	<u>No.</u>	Totals
0	fl2 + +	208	
	+ bm3 su1	197	405
1	fl2 bm3 su1	8	
	+ + +	14	22
2	fl2 + su1	3	
	+ bm3 +	6	9
1+2	fl2 bm3 +	0	
	+ + su1	0	0
% recombination	on fl2bm3 = 5.0 +/- 1.0		
% recombination	on bm3su1 = 2.1 +/- 0.7		
% recombinati	on $f/2 - sul = 71 + l - 12$		

following linkage relationship was established: fl2 - 5.0 - bm3 - 2.1 - su1. These data are consistent with the fl2 - su1 distance (8 cM) given on the most recent genetic map of chromosome 4, and clearly place bm3 distal to the TB-4Sa breakpoint.

Miscellaneous allelism tests

--Stinard, PS

Over the past few years, we have conducted allelism tests between mutants with similar phenotype, especially if they have been found to have the same chromosome location. We report here the results of four such positive allelism tests.

We obtained preliminary TB mapping data last year placing the pale yellow endosperm mutant y2 to the short arm of chromosome 7. Since y8, also on chromosome 7, has a similar phenotype, we conducted an allelism test and found them to be allelic. We did a pedigree search on the origin of our y2 stock and found that it came from George Sprague. The lineage is not clean, and at one point, it had been reisolated by Sprague after being crossed to the y8 reference allele and to other pale endosperm factors. y2 was originally described as being a white endosperm mutant tightly linked to vp2 on chromosome 5 (Eyster, 1931. Genetics 16:574-590). Since vp2 mutant kernels have white endosperm, it is probable that Eyster was simply observing the white endosperm of vp2 and that the crossovers he observed were either dormant vp2 kernels or heterofertilization events. The y2 stock that the COOP has is certainly not the original y2 described by Eyster, and is probably identical to the y8 reference allele, which became introgressed into the line by accident.

The virescent mutant v^* -JRL that we mapped to 9L last year (MNL 73:90) was crossed to the 9L virescents ar1, v1, and v30. Only the crosses to v1 produced virescent progeny. We have renamed v^* -JRL as v1-JRL.

We conducted an allelism test of our uncharacterized terminal ear mutant *te*-Galinat* with *te1* and found them to be allelic. We now call the mutant *te1-Galinat*.

Last year, we located the mutant y11 to the long arm of chromosome 2 using B-A translocations (MNL 73:90). Last winter, we crossed homozyous y11 plants to heterozygous w3-R plants and noted 1:1 segregation for yellow and pale yellow kernels on the progeny ears. This summer, we planted the pale yellow kernels and self-pollinated the resulting plants. All ears segregated in a 3:1 ratio for pale yellow dormant to white endosperm viviparous kernels. The most logical explanation is that the pale yellow dormant kernels are homozygous y11 or heterozygous for y11 and w3-R, and the white endosperm viviparous kernels are homozygous for w3-R. We conclude that w3 and v11 are allelic, and propose that v11 be renamed w3-y11. It should be noted that w3-y11 kernels are dormant and produce green seedlings, whereas w3-R kernels are viviparous and produce albino seedlings. This appears to be an example of allelic diversity similar to that which exists at other carotenoid loci in maize.

Results of TB tests of unplaced mutants

--Stinard, PS, and Jackson, JD

The past two years, we have reported the results of TB mapping crosses made to symbolized unplaced mutants in the Coop's collection (MNL 72:79 and MNL 73:90). This year, we observed grow-outs of the TB crosses made last year to mature plant mutants. The mutants for which we obtained positive results are summarized in Table 1. Additional crosses with linkage markers will be made to confirm chromosome arm placement, and allelism tests will be conducted with mutants with similar phenotype located on the same chromosome arm.

Table 1. Results of TB tests of symbolized unplaced mutants.

Mutant	Arm-locating TB Cross	Number of Positive Tests/Total Number of Crosses with this TB	Mutants on Same Chromosome Arm with Similar Phenotype	Note
les*-3F-3330	TB-5Sc	2/2		1
les*-Pl262474	TB-4LI	2/2		
zb3	TB-1Sb	2/2	zb4	

1. A repeat and confirmation of tests reported in MNL 73.

URBANA, ILLINOIS Maize Genetics Cooperation • Stock Center BERKELEY, CALIFORNIA University of California at Berkeley

The reverse germ orientation2-VI mutation maps to chromosome 1L near Ts6 and shows allelism to ids1

--Jackson, JD, Kaplinsky, N

As previously reported (MNL 70:66), *rgo*-VI* arose in a *Rf*-VI* strain of John Laughnan. This mutant was shown not to be allelic to *rgo1* and was therefore called *rgo2-VI*. The *rgo2* mutant sometimes produces extra florets within the tassel spikelets and in the female spikelets as well, giving a reverse germ orientation phenotype. Floret number seems to vary between two and three in the *rgo2-VI/rgo2-VI* tassels, but kernels on *rgo2-VI/rgo2-VI* ears are all rgo in straight rows. Another *rgo** from Frances Burr was shown to be allelic to *rgo2-VI* and was therefore referred to as *rgo2-Burr*. Mutations with similar phenotypes have been reported by Brieger (MNL 22:55,1948), Joachim (MNL 29:53,1955; MNL 30:84-85,1956; Proc. Minn. Acad. Sci. 24:37-43,1956) and Sachan and Sarkar MNL 52:119-120, 1978).

One of these is *reversed germ orientation1* (*rgo1*). This is a recessive mutation, which causes the spikelet meristem to produce three instead of the normal two floret meristems. Development of the third floret causes reversed kernels due to the distichous pattern of floret initiation in the spikelet. *rgo1* also prevents the abortion of lower florets in some ear spikelets. *rgo1* maps to chromosome 9 near *wx1* (Nick Kaplinsky et al., Maize Genetics Conference Poster Abstracts 41: 1999).

The *rgo2* phenotype is similar to the *rgo1* phenotype in the tassel and the ear. Ears from plants heterozygous for *rgo1* and *rgo2* have a reversed germ phenotype, suggesting that *rgo1* and *rgo2* are in the same developmental pathway and are sensitive to each other's dosage.

Crosses were undertaken with the comprehensive set of B-A translocations (TB's) to determine the chromosomal location of the *rgo2-VI* mutation. Plants homozygous for *rgo2* were crossed by the respective TB's and seeds from the resulting F1 ears showing the rgo phenotype were planted in the field and scored for hypoploid status by plant height and pollen sterility. The tassels on hypoploid plants were checked for floret number and ears were self-pollinated and at harvest scored for rgo phenotype. The results of crosses with TB-1Sb, TB-1La, TB-7Sc and TB-9Lc are summarized in Table 1. Results placed *rgo2-VI* to chromosome 1.

Table 1. Summary of TB crosses with rgo2.

Mutant	Arm - locating TB Cross	Summary of hypoploid ears	floret # / spikelet in hypoploid tassels	Mutants on Same Chromosome with Similar Phenotype
rgo2-VI	TB-1Sb	3 ears all rgo: 2 ears some rgo: 7 ears some rgo	3 3 2	
rgo2-VI	rgo2-VI TB-1La 10 ears all rgo: 11 ears all rgo: 1 ears some rgo: 5 ears some rgo		3 2 3 2	Ts6, ids1
rgo2-VI	TB-7Sc	16 ears all +rgo: 5 ears some rgo	2 2	
rgo2-VI	2-V/ TB-9Lc 26 ears all +rgo: 8 ears some rgo		1	rgo1 maps to 9L

Crosses were then made of *rgo2-VI* with *Vg1*, *Kn1* and *Ts6* on chromosome 1 to confirm chromosomal arm placement. These results are summarized in Tables 2-4. The linkage test was set up as a backcross as indicated. Kernels from the backcross ears were planted in the field and the resulting plants were scored for the chromosome 1 markers and self-pollinated. The resulting ears were scored for reversed germ orientation. Tight linkage was obtained with *Ts6* placing *rgo2-VI* on chromosome 1L very close to *Ts6*.

Table 2:

2 point linkage data for rgo2-Ts6

Testcross: [Rgo2 Ts6 x rgo2 ts6] x rgo2

Region	Phenotype	No.	Totals	
0	Ts+	84		
	+ rgo	97	181	_
1	Ts rgo	5		
	++	2	7	

% recombination rgo2-Ts6 =3.7±1.4

Table 3:

2 point linkage data for rgo2-Kn1

Testcross: [Rgo2 Kn1 x rgo2 kn1] x rgo2

Region	Phenotype	No.	Totals
0	Kn+	60	
	+ rgo	62	122
1	Kn rgo	23	
	++	28	51

% recombination rgo2-Kn1=29.5±3.5

Table 4:

2 point linkage data for rgo2-Vg1

Region	Phenotype	No.	Totals
0	Vg +	25	
	+ rgo	46	71
1	Vg rgo	22	
	++	13	35

% recombination rgo2-Vg1 =33.0 ±4.6

Another mutation with a similar phenotype (*indeterminate spikelet1=ids1*) has been mapped to 1L with recombinant inbred lines (George Chuck et al., Genes & Development 12:1145-1154, 1998). According to Ben Burr, *ids1* maps to the long arm of chromosome one and showed zero recombination with RFLP marker *chi1*, which is out on 1L, 15 cM distal to *Ts6* (George Chuck, personal communication).

The *rgo2* phenotype is similar to the *ids1* phenotype in the tassel and they both give reversed kernels. Southern blots using

ids1 as a probe suggested that *rgo2* is an allele of *ids1* (Nick Kaplinsky et al., Maize Genetics Conference Poster Abstracts 41: 1999).

Crosses were then undertaken to test for allelism between *ids1* and the two *rgo2* alleles. Results are presented in Table 5. The allelism crosses were between plants homozygous for *rgo2* and heterozygous for *ids1*. In both cases crosses gave a good 1:1 segregation indicating a positive allelism test. In further crosses the mutant segregated out in good 3:1 ratios as would be expected. We suggest the proposed new designations for these two new alleles of *ids1*.

Table 5:

Allelism tests of ids1 and rgo2

previous designation	allelism test with +/ids1	self of + ear from Allelism Test	self of rgo ear from Allelism Test	proposed new designation
rgo2-VI	38 + : 32 rgo (1:1)	5 + : 2 rgo (3:1)		ids1-rgo2-VI
rgo2-Burr	32 + : 36 rgo (1:1)	11 + : 4 rgo (3:1)	0 + : 27 rgo (all mut)	ids1-rgo2- Burr

URBANA, ILLINOIS University of Illinois GAINESVILLE, FLORIDA University of Florida

Transposon tagging of nuclear genes that control mitochondrial gene expression

--Gabay-Laughnan, S, Chase, CD

The S system of cytoplasmic male sterility (CMS-S) in maize presents an unprecedented opportunity for the identification, cloning and functional characterization of nuclear genes regulating mitochondrial gene expression in a higher eukaryote. In this system, expression of a novel chimeric gene in the mitochondria results in the collapse of starch-filling pollen and, consequently, a malesterile phenotype. Loss-of-function mutations in nuclear genes required for mitochondrial gene expression behave as restorerof-fertility (*Rf*) alleles, blocking expression of the chimeric mitochondrial gene and the male sterility trait. Such mutations are visible in pollen because it is haploid. *Rf* alleles also block expression of essential mitochondrial genes. These mutations are tolerated in pollen because late-stage pollen development and pollen germination do not require high levels of mitochondrial gene expression or function.

Based upon these observations, we propose that *Rf* alleles for CMS-S maize can be generated by transposon mutagenesis and cloned via transposon tagging. These mutations should be recovered at high frequency due to the large number of nuclear genes involved in mitochondrial gene expression. The recovery of new *Rf* alleles by transposon mutagenesis is being approached by screening populations of male-sterile, S-cytoplasm plants carrying active *Ac-Ds* or *I-En* (*Spm*) transposons. Pollen from plants with male-fertile tassels or tassel sectors will be used to fertilize the ears of CMS-S tester plants for recovery of the new *Rf* alleles.

To demonstrate the feasibility of this transposon mutagenesis, we conducted a preliminary screen of 1,241 CMS-S plants carrying an active Ac element in chromosome 9 and a Ds reporter at the a1 locus (a1-m4). This screen was carried out by Chase and Gabay-Laughnan in Gabay-Laughnan's 1999 summer nursery at the University of Illinois, Champaign-Urbana. The screening population was developed in the Mo17 inbred background, and the plants

were derived from spotted kernels indicative of *Ac* activity. Twenty-four plants had visible sectors of male fertility on otherwise male-sterile tassels. Pollen samples from each sector were examined through a field microscope and observed to consist of starch-filled and collapsed grains in roughly equal proportions. This demonstrated that each sector resulted from a nuclear mutation. (Sectors resulting from cytoplasmic mutants consist entirely of starch-filled pollen). Of the 24 sectors, 12 were large enough to be used for testcrosses. Testcrosses from 10 of the 12 plants resulted in seed set. In CMS-S maize, only *Rf* pollen is functional. All of the testcross progeny are therefore expected to carry an *Rf* allele. This will be confirmed in our 2000 summer nursery.

Our preliminary observations indicate that we have recovered 10 independent *Rf* alleles from 1,241 plants. This high rate of mutation is consistent with the large number of nuclear genes known to regulate mitochondrial gene expression in yeast. Most independent *Rf* alleles are expected to result from mutations at different nuclear loci. This will be confirmed through allelism tests. The high rate of mutation in the Mo17-S *a1-m4* plants contrasts with the mutation rate in Mo17-S plants lacking an active *Ac*. Over the past five years, we have examined over 2,000 Mo17-S plants and recovered only two sectors of male fertility. The *Ac-Ds* system is almost certainly responsible for the *Rf* alleles recovered in the Mo17-S *a1-m4* materials. This will enable us to recover molecular clones of these alleles.

In summary, observations made in Gabay-Laughnan's summer nursery provide a strong indication that we will efficiently recover new *Rf* alleles from CMS-S plants carrying active transposable element systems. If, as expected, the majority of mutations are transmitted to the next generation and result from mutations at different loci, the recovery of mutants will not be a limiting factor in our study. We are hoping to clone on the order of 10 different *rf* loci. Given the high-throughput methods that are now being applied to clone transposon-tagged loci, our target is very reasonable. Indeed it may be possible to clone many more loci.

The value of the molecular clones we will recover is significantly enhanced by our ability to examine the effects of mutations at *rf* loci on the expression of mitochondrial genes in developing maize pollen. The mutants and gene sequences derived from this project will provide an invaluable resource for the future genetic and molecular dissection of mitochondrial function in higher organisms.

Chromosome location of two Oh51A CMS-S restoring alleles and their potential usefulness in the molecular cloning of *rf* loci

--Gabay-Laughnan, S, Chase, CD

Gabay-Laughnan has been searching for exceptional male-fertile plants in a number of CMS-S inbred line backgrounds for three decades. The inbred background exhibiting the highest frequency of nuclear reversion is Oh51A. Twenty-four restorer-offertility (*Rt*) alleles have been identified from 2,635 Oh51A-S plants, a rate just under 1%. Six new *Rt* cases arose in the 476 Oh51A-S male-sterile plants grown in the summer of 1999. Heritability and transmissibility of these *Rt* cases will be determined in our 2000 summer nursery.

We are using the *wx*-marked translocation series to map new *Rf* alleles to chromosome (Laughnan and Gabay-Laughnan, The Maize Handbook pp. 255-257, 1994). We have previously mapped three of the newly arisen Oh51A *Rf* alleles to chromosomes 3, 6 and 8 by these means (Gabay-Laughnan, Maydica 42:163-172,

1997) and will be using RFLP marker analysis to more accurately estimate their relative positions on their respective chromosomes. We report here that an additional two Oh51A *Rf* alleles have been located to chromosome. *Rf* 81-94-5 is on chromosome 2 according to our crosses with *wx* T2-9c. *Rf* 91-1066-3 has also been mapped to chromosome 2, but through use of *wx* T2-9d. These two newly mapped restorers are of special interest to us since the standard CMS-S restorer, *Rf3*, maps to the long arm of chromosome 2 (Laughnan and Gabay, Maize Breeding and Genetics pp. 427-447, 1978; Kamps and Chase, Theor. Appl. Genet. 95:525-531, 1997).

We hypothesize that the high rate of nuclear reversion in the Oh51A nuclear background reflects the presence of an active transposable element system. If that is the case, at least some of the new Oh51A Rf alleles may be tagged with a transposable element. Since molecular probes are available for the maize transposable element systems Ac-Ds, I-En (Spm) and Mu, and tester stocks are available to determine the presence of active Ac, En (Spm) and Mu elements, we have begun screening Oh51A for the presence of these three elements by genetic means. The Oh51A inbred line has been crossed with Ac, En (Spm) and MuDR tester stocks. The resulting F1s will be back-crossed by the appropriate tester stocks in Gabay-Laughnan's winter nursery. When mature ears are harvested, they will be analyzed for the kernel phenotypes indicative of active transposable elements. If Oh51A carries active Ac, En (Spm) or Mu transposons, we will generate segregating populations of CMS-S Rf/rf and CMS-S rf/rf plants for each independent Rf allele recovered in this background. These segregating populations will be screened for transposable element sequences that co-segregate with Rf alleles. Those populations will be used for the molecular cloning of rf loci.

VARANASI, INDIA Indian Institute of Vegetable Research

Attributes of maize genotype for baby corn production --Kumar, S, Kalloo, G

Baby corn is a diversified product of the maize plant, where baby ears are harvested before fertilization and consumed as a fresh or canned vegetable. In fact, young dehusked ears of maize have been eaten as a vegetable by the farmers for a long time in Thailand, Taiwan and China. In the recent past, it is a modern food habit, which accepted tender-dehusked ears as a cooking ingredient for use in salad, soup, pickle and several Chinese preparations. The canning industry has made baby corn even more important as an industrial crop in countries like Thailand, where baby corn production technology is a success story. The success can be visualized by observing the export figures of canned baby corn, which increased dramatically from 67t, worth US \$38,059 in 1974 to 36,761 t, worth US \$33 million in 1992 (Paroda & Chamnan. "Baby corn production technology in Thailand. A success story". APARI publication, 1994). Thailand is the world leader in the export of both fresh and canned baby corn and the world market for fresh and canned baby corn is expanding very rapidly (Jason. "World market for fresh and canned baby corn". RAP market information Bulletin No. 5, 1995). In many other countries like Taiwan, Sri Lanka, Indonesia, India, Zambia, Zimbabwe, South Africa, Guatemala, Nicaragua, etc., baby corn production technology is gaining ground and baby corn is emerging as an export oriented vegetable. Baby corn production technology consists of several components like specific maize variety/hybrid, specific production practices, post harvest practices etc. Among these, the most important one is specific maize variety/hybrid suitable for baby corn production. Albeit any kind of maize genotype can be grown for baby corn production in the kitchen garden, for commercial purpose a variety should be characterized by certain following genetic traits.

Early maturity: Among the hierarchy of baby corn varietal attributes, earliness is one which attracts vegetable growers habituated to harvesting short duration crops. Earliness of the variety not only provides the opportunity to take baby corn as a catch crop, but also helps the crop escape many of those biotic and abiotic stresses which appear after the flowering stage. Plants of an ideal baby corn variety should produce all the ears (of silk emergence stage) between 45 to 55 days of duration.

Prolificacy (more number of cobs/plant): Ideal plant ideotype for dent corn/field corn (corn for grain purpose) is two ears per plant with maximum number of bold kernels. But for baby corn production, an ideal plant should bear at least three ears per plant without losing quality, size and shape of young ears. In corn, prolificacy is highly influenced and negatively correlated with the planting density. Therefore, with respect to prolificacy, the variety should not only bear more cobs but also it should be tolerant to high density planting. Selection of small tassel may be the one criterion to select genotypes tolerant to high density planting. Furthermore, the advice of Dr. Galinat for yield improvement of field corn through increased plant density (Galinat. "Canopy and yield enhancement per acre with dense populations". MNL 70:67,1996; Galinat. "Reverse maize breeding for high density populations". MNL 73:91, 1999), can also be taken into account by the baby corn breeders.

Synchronized ear emergence: Synchronized earing reduces the harvesting and storage cost of young ears drastically. Therefore, for commercial production purposes, the variety should be preferably a single cross hybrid. Even in certain single cross hybrids, synchronization can not be achieved, especially during second or third ear emergence. This problem can be solved either by developing baby corn hybrids having an additional attribute in the form of sugary (su1)/shrunken (sh2) gene(s) or over-sized ears can be harvested for grain production. In the former case, over sized ears can be harvested 15-18 days after fertilization (at milking stage)as sweet corn. However, this alternative is less attractive because there is no taste advantage in using a sweet corn variety over a dent corn variety for baby corn production, as immature ears are harvested and at this stage sugar is not accumulated in kernels. Further, crop and seeds of sweet corn varieties are more prone to certain insects and storage pests.

Yellow kernel: Yellow immature kernel with uniform row arrangement is the prescribed standard for the international market. Hence, a yellow seeded corn variety fulfills one of the criteria for a baby corn cultivar. Plant height: Plant height and ear height on the plant affect ease of picking. Optimum plant height varies from 2 to 2.5 m with the preferable height of lower and upper ears at least 1.5 ft and not more then 6 ft, respectively. Proper ear height on the plant reduces the cost of picking, which requires hand labor.

VIÇOSA, BRAZIL Universidade Federal de Viçosa

Cytogenetic mapping of sister chromatid exchange points in maize --Borges, CMO, Carvalho, CR

In order to map the sister chromatid exchange (SCE) points in maize, image analysis resources by computational methods (Rasband, NIH-image 1.60 anonymous ftp from zippy.nimh.ninh.gov) were used in association with cytogenetic techniques. Maize seeds from the test line from Universidade Federal de Vicosa were germinated and the roots treated with a 100 µM 5-bromo-2'-deoxyuridine solution for 22 hours and then with a 0.02% colchicine solution for 2 to 3 hours, both done in the dark at 28 C. The roots were fixed in a methanol:acetic acid (3:1) solution and slides were prepared by the air-drying technique after enzymatic maceration (Carvalho, Saraiva, Heredity, 70:515-519,1993). The preparations were stained with Hoechst 33258 for 10 minutes, irradiated with a UV-254 nm light for 5 to 15 minutes and stained with a 2% Giemsa solution, for 10 minutes (Perry, Wolff. Nature, 251, 156, 1974). Images of chromosome figures were captured directly from the microscope by means of a video camera coupled to a computer and digitized with an image analysis software. To generate 256 gray value density profile plots, chromosome images were calibrated to the range of 0 (white) to 255 (black) and spatial calibration from chromosome length was performed in micrometers. This methodology permitted the identification of the SCE points with enough resolution to

Figure 1. The plot pixel value of 256 gray scale of sister chromatid exchanges in maize chromosomes (numbers: 6, 9, 1 and 3). The background picture was set to a 0 gray value and chromosome length in micrometers. C = centromere.

measure the relative and absolute positions of the exchanged segments (Fig. 1). These results were used to elaborate the maps of the positive and negative regions of the SCEs.

WALTHAM, MASSACHUSETTS University of Massachusetts

Is the recombination of genes during natural domestication an act of genetic engineering?

--Galinat, WC

Has Fink (1999, Web Access Excellence, About Biotech [http://www.accessexcellence.org/AB/WYW/fink/fink_3.html]) incorrectly redefined the use of the term recombination (or recombinant) in order to serve an artificial agenda? The term recombination was first used by Darwin to describe the power of the breeder during the domestication of plants and animals and by Mendel to describe genetic recombination during segregation of various traits in the Garden Pea.

According to Fink, recombination means genetically engineered and, since most food has undergone human-directed recombination of mutant genes during domestication, we would starve to death without Fink's genetic engineering. He states, "Of course they (the restaurants) will serve recombinant corn because it is the only corn we have."

I may add the only sexual-based life we have on Earth is recombinant life. In an appeal to those who have a fear reaction to the unknown breeding created or modified by genetic engineering, I quote from Franklin Roosevelt: "The only thing we have to fear is fear itself." To those who respond to logic, I ask questions. If it is natural evolution for flu viruses to pick up human genes that trigger sneezing for the sake of virus survival, isn't it also natural evolution for humans to use transgenic genes for the sake of human survival? Are we just another living thing or are we a unique life form capable of amazing grace, of cultural evolution and of travel beyond our planet of origin? Are we destined to understand and populate the Universe while we have a chance before we become extinct and our "Pale Blue Dot" non-existent?

Does a good goal justify bad means? The botanical terminology Fink uses is incorrect, such as his misuse of the term <u>spike</u> to refer to <u>spikelet</u>, each morphologically different and genetic-pathway different. He incorrectly plagiarizes (and allows recopyrighting without permission) my drawing showing the role of recombination in the domestication of teosinte leading to the origin of corn, already copyrighted by the University of Chicago Press in my article "Corn, Columbus and Culture," <u>Perspectives in Biology and</u> <u>Medicine</u> 36:1-12. 1992. My drawing in Fig. 2 on page 5 of the article is described in correct botanical terminology.

Fink's confusion between spike and spikelet may be corrected in the dictionaries and glossaries of grasses as follows:

A <u>spike</u> is a head (ear) of grain (grass seed) bearing many spikelets sometimes in many rows (ranks) borne around the main axis (rachis) of a compound inflorescence. In the case of corn, the entire ear (spike), sometimes bearing 1000 kernels, may be bracted (enclosed) by husks borne below on the shank.

A <u>spikelet</u> is bracted by two glumes. The axis (rachilla) of the spikelet may carry several florets, with each bracted by a lemma on the outer side and a palea next to the rachilla. The <u>spikelets</u> may be paired as in both the sep-

arate male and female inflorescences of corn, or they may be single in just the female <u>spikelets</u> of teosinte (corn's wild ancestor).

The recombinant of two different double rowing pathways quadruples the kernel row number per ear (spike) during the domestication of maize from teosinte

--Galinat, WC

The importance of my 1992 cross-sectional drawing of spikelets and spikes during the first recombinant jump of teosinte domestication toward maize has been recognized by others (Fig. 2 below).

Although the selection that transformed teosinte into maize was probably deliberate domestication for increased food supply, some of the selection may have been unconscious because the more productive seed ears would contribute more progeny (Galinat. 1995:The origin of maize: Grain of humanity. Economic Botany 49:3-12).

The diagrams represent: (a) the ancestral teosinte; (b)a four rowed mutant teosinte from two ranks of paired spikelets; (c) a four rowed mutant teosinte from four ranks of single spikelets; (d)The double mutant teosinte derived from the hybrid is eightrowed corn.

The cupules with spikelets are from two successive nodes, with the lower ones in surface view. The upper ones are shown in solid black from cross sections revealing some details of rachillae, spikelets, and kernels. The single spikelets are illustrated in a more reflexed position than normal in order to reveal their sessile condition, in contrast with the pedicelate spikelet activated as a key corn trait.

The art work shown above on the two morphological pathways of teosinte transformation leading to maize is from my original balanced representation while the caption is directly from the published paper (Galinat, W.C.1992 Corn, Columbus, and Culture. Perspectives in Biology and Medicine 36:1-12). The art work as published became unbalanced because the truly great editor, Richard L. Landau, had to condense the spacing between items to obtain more room for my poem, sent in late after the page proofs were already printed.

Epilog to figure 2, Corn, Columbus and Culture.

Here you see how art and poetry became the communication key to render information on recombination between mutants of teosinte in the amazing creation of maize.

It is tragic that editors of most scientific journals and their reviewers deplore and often refuse combinations of art and poetry in their publications. The general public knows that art and poetry are the best tools for communication.

Figure 2—The transformation of teosinte into corn: Here you see, how two kinds of four-rowed teosinte, became the key, to corn's pedigree from their hybrid one morn, the first corn was born, as an amazing creation from recombination. WOOSTER, OHIO The College of Wooster and Ohio Agricultural Research & Development Center LONDON, ONTARIO The University of Western Ontario

Persistence of 18kDa HSP mRNA accumulation in metal-ion insulted maize seedling radicles relative to heat shock --Bouchard, RA, Yang, Z, Walden, DB

We reported previously that maize root tips insulted with the heavy metals Cd and Zn accumulate mRNAs encoding 18kDa HSPs (shsp18s) in the epidermal and cortex regions of the root tip (Yang and Walden, MNL 71: 55, 1997), and more recently relative quantification of the mRNA levels (Bouchard, Yang and Walden, MNL 72: 85, 1998). We have now examined the relative levels of shsp18 mRNAs during recovery from cadmium stress versus heat shock using quantitative RNA-Dot hybridization.

Seedling growth, heat shock (HS), and heavy metal-ion insults were performed as reported in the notes cited above, while RNA extraction, filter-binding, preparation of labeled DNA probes, hybridization conditions, scanning, and quantification were as described in Bouchard et al., 1993. Maydica 38: 135-144). Seedlings subjected to heat shock at 40C were shifted to 25C at the end of the 2 hour period and held on damp filter paper until harvest. Seedlings incubated in CdCl₂ solution were rinsed in sterile distilled water for 15 minutes with gentle agitation, then shifted to damp filter paper at 25C until harvest. The RNA Dots were probed with the insert fragment from plasmid pscMHSP18-9-2, a sub-clone containing the ORF of clone pMHSP18-9 (map designation uwo11), which is a common probe for mRNAs from all members of the maize shsp gene family. The results, relative to the signals observed after each treatment in radicles harvested immediately after the period of stress set to 100%, are shown in the accompanying graph.

These results reveal an interesting difference in the persistence of relative RNA levels after the two types of stress treatment. Once heat shock ends, shsp18 mRNA levels decline quickly, and are already close to baseline after only two hours. By contrast, the overall levels of shsp18 mRNA remain essentially unchanged for many hours after cadmium insult.

It is possible that substantial amounts of cadmium remain in the tissues of seedlings even after the 15-minute rinse that follows treatment with the metal. However, the perdurance of shsp18 mRNA following cadmium insult would still contrast with what is seen with prolonged heat stress. As reported in Greyson et al. (1996, Developmental Genetics 18: 244-253), under continuous heat shock shsp18 mRNAs essentially decline to baseline levels after eight hours. It is thus likely that the control mechanisms modulating shsp-gene response to metal stress are at least partially distinct from those governing their response to heat stress.

WUHAN, CHINA Wuhan University BEIJING, CHINA Chinese Academy of Sciences

Identification of *Zea diploperennis* chromatins introgressed to maize via genomic in situ hybridization

--Wang, L, Song, YC, Ning, SB, Liu, LH, Gu, MG, Guo, LQ

Zea diploperennis (DP) is a new teosinte found by Iltis et al. (1979) from Mexico. It shows many important traits, such as disease and pest resistance, and adaptation to extreme, stressful environmental conditions. DP and maize are close relatives. They not only have the same chromosome number but also show similarities in size and morphology for most of the chromosomes (Pasupuleti and Walton, 1982). DP is interfertile with maize (Iltis et al. 1979). Therefore, it provides geneticists and maize breeders with a potentially valuable source of germplasm (Iltis et al. 1979).

Guo et al.(1997 and 1998) crossed maize inbred line Zi 330 with DP, and made backcrosses of the hybrids with Zi330. Parthenogenesis was successfully induced in the BC1 by chemicals and the alloplasmic pure line 540 was obtained at the second generation of chemical-induced parthenocarpy (Pa2)(Guo et al. 1998). The pure line 540 was proliferated by inbreeding and crossed with maize inbred line Zi 50003. The F1 (the first hybrid generation) named Yi Dan 6 has already been applied to maize production in China. Both 540 and the F1 hybrids, Yi Dan 6, showed much stronger Helminthosporium turcicum and Helminthosporium maydis resistance and wider adaptation to stressful conditions, compared with the maize parents and the F1 intraspecific hybrids of maize (Guo et al. 1997). It could be deduced that the DP chromatin dictating these characters had been introgressed into the parthenocarpic progenies (Pa2), the 540 should be an alloplasmic pure line and it had transferred the introgressed chromatin to its F1 hybrids, Yi Dan 6.

The karyotypes and chromosome C-banding patterns among maize Zi330, DP and the alloplasmic pure line 540 have already been analyzed comparatively (Yang et al., 1995; Yan et al., 1997). Although some chromosome variations of 540 were found in their studies, it was still unknown whether the DP chromatin was introgressed into the parthenocarpic progenies or not and if it was, where it was located. GISH using total genomic DNA as a probe to identify alien chromosomes or chromosome segments was well-established in many other plant species (Le et al. 1989; Heslop-Harrison et al 1990; Leitch et al. 1990; Mukai and Gill 1991; Schwarzacher, et al. 1992; Anamthawat-Jonsson and Heslop-Harrison 1993.; Kenton, et al. 1993; Mukai and. Nakahara 1993; Yasuhiko and Yumiko 1993; Chen and Armstrong 1994; Jellen et al. 1994; Jiang and Gill 1994; King et al. 1994; Fernandez-Calvin et al. 1995; Humphreys et al. 1995; Jacobsen, et al. 1995; Leggett

and Markhand 1995; Keller et al. 1996; Zhong et al. 1996; Garriga-Caldere et al. 1997; Pickeing et al. 1997; Tang et al. 1997; Belyayev and Raskina 1998; Chen et al. 1998; Mikhailova et al. 1998; Stevenson and Armstrong 1998; Kamstra et al. 1999), while, as we know, no report about this respect has been published yet in the distant hybrids of crosses of maize with DP. In this study, the introgressed DP chromatins were detected and located in both the pure line 540 and Yi Dan 6 by genomic in situ hybridization.

Zea diploperennis (DP) was supplied by Mr. Li Dongyu, Guangxi Zang Autonomous Region of China. Maize Inbred lines Zi330, alloplasmic pure line 540 and the F1 hybrids of 540 X Zi 50003, Yi Dan 6, were supplied by Institute of Genetics, Chinese Academy of Sciences, Beijing. Their pedigree is given in Fig. 1.

Inbred Line Zi330 _ DP

Figure 1. Brief illustration of the relationships between the tested materials.

Genomic DNA was extracted from DP and inbred line 330 following the procedure described by Doyle and Doyle (1990). The total genomic DNA from DP for use as labeled probe was mechanically broken to 10-12kb fragments prior to labeling, and the total genomic DNA from 330 was fragmented to pieces about 100-250bp by autoclaving for 5min and used as blocking DNA according to the procedures reported by Heslop-Harrison et al. (1990), Schwarzacher et al. (1992), and Jacobsen et al. (1995).

The preparation technique was that described by Song et al. (1994) with some modification. The harvested root tips were pretreated in saturated α -bromonaphthalene solution for 2hr at room temperature (RT). After rinsing in tap water, the root tips were fixed in fresh fixative (3 methanol: 1 glacial acetic acid) for 2-3hr at RT and then, digested in 1% cellulase and 1% pectinase (SERVA) at 28 C for about 2.5hr. The softened tips were subsequently rinsed gently with distilled water. Following removal of the water, 3-4 root tips were smeared with fixative onto a clean slide. The slide was flame-dried.

Nick translation of DP genomic DNA was adopted with the kit offered by Sino-American Biotechnology Company, China. 15µl of dNTP (mixture of average amount of dATP, dCTP and dGTP), 5µl of 10X buffer, 4µl of DP genomic DNA, 5µl of Bio-11-dUTP and 5µl of DNAse1 and DNA polymerase1 mixture, and ddH₂O were added to total volume 50µl. It was incubated at 15 C for 2hr, and the reaction was stopped by adding 5µl of 0.2M EDTA.

The labeled probe was purified by passing the reaction solution through a Sepharose CL-6B (Sigma) column.

The procedures of in situ hybridization and signal detection followed the modified methods published by Leitch and Heslop-Harrison (1993), Schwarzacher et al. (1992), Schwarzacher (1994) and Jacobsen et al. (1995). The hybridization mix was 42µl in the total volume and it contained 1.0µg of probe (0.2µg/µl), 50% deionized formamide (Sigma), 10% sodium dextran sulphate (Sigma), 4.2µg ssDNA and 2XSSC, then mixed with excess blocking DNA of inbred line 330 which was 10-50µg respectively based on different tested ratios. Subsequently the hybridization mixture was denatured at 100 C for 10min, immediately chilled on ice for 10min. Hybridization was performed overnight at 37 C. The slides were then washed in formamide (20%), 2XSSC, 0.1XSSC, at 42 C for 15min each step, and subsequently washed in 0.1% TritonX-100, PBS at RT, for 5min each step.

DAB detection was performed according to the procedure outlined by Gustafson et al. (1990), Gustafson and Dille (1992).

The procedure included the following steps: 1) after the washes, the slide was covered with 30 μ l (10 ng/ μ l) anti biotin FITC conjugate developed in goat (Sigma) and incubated in a humid chamber at 37 C for 45 min and the slides were washed 3 times, each for 5 min in PBS at RT; 2) subsequently covered with 30 μ l (11ng/ μ l) anti-goat-IgG conjugated with biotin (Sigma) instead, and incubated in a humid chamber at 37 C for 45 min and the slides were washed 3 times, each for 5 min in PBS at RT; 3)repeated step 1; 4) the slide was mounted in 20 μ l p-phenylenediamine dihydrochloride(10 μ g/ml) containing 3 μ g/ml propidium iodide (PI). Slides were analyzed using an Olympus fluorescence microscope.

An average of the hybridization site measurements was taken by calculating the distance from the centromere to the detection site and using that as a percentage of the arm on which the site was located. The arm ratio of the chromosome showing a detection site was also measured in order to determine on which chromosome the site was located. The standard deviations for both the percentage distance of the hybridization site and the arm ratio were calculated.

Different blocking ratios of the labeled DP genomic DNA: unlabeled maize Zi330 genomic DNA including 1:10, 1:20, 1:30, 1:40, and 1:50 were tested. Many scattered signal spots were distributed irregularly on different chromosomes and interphase nuclei of the tested pure line 540, Yi Dan 6 and the control, maize Zi330 with the lower blocking ratio including 1:10 and 1:20. The signals were not easy to detect even on chromosomes of the tested 540 and Yi Dan 6 with the higher blocking ratios 1:40 and 1:50. The optimum blocking ratio is 1:30. The following regular and stable results were observed through the eight repeated experiments with the blocking ratio of 1:30.

The genomic in situ hybridization signals of the pure line 540 appeared on the long arm of chromosomes 1 (Fig. 2A and C) and 8 (Fig. 2A), and chromosomes 2 (Fig. 2B) and 5 (Fig. 2A, 2B and C). Their detection rates were 10.10%, 11.15%, 8.01%, and 13.24% respectively and the percentage distances from centromeres to the hybridization sites were 86.3 ± 4.5 , 68.3 ± 4.4 , 12.2 ± 2.5 , 73.7 ± 3.0 for the long arms of chromosomes 1, 2, 5, and 8 respectively (Table 1 and Fig. 2). In some mitotic cells, the signals showed simultaneously on the two members of the detected homologous chromosome pairs 1, 2, 5, and 8, each of the two mem-

Table 1. Introgressed chromatin location and arm ratio average of the chromosomes detected by GISH with the blocking ratio of 1 probe: 30 Zi330 DNA

Materials	arm		DAB detection		FISH	detection	Average percent distances of DAB and FISH detection (%)	Ratio of long to short arm
		No. of detection	Detection rate (%)	Percent distances (%)	No. of detection	Percent Distances (%)		
Alloplasmic line 540	pure1L**	29	10.10	90.23±8.54	5	82.42±4.45	89.08±8.03	1.18±0.03
	2L	32	11.15	73.77±3.48	9	62.85±7.56	71.37±4.32	1.48±0.05
	5L	23	8.01	14.25±1.75	6	10.23±3.32	13.42±2.04	1.04±0.02
	8L	38	13,24	75.02±5.01	8	72.41±1.12	74.57±4.39	3.05±0.04
Yidan6	1L	13	6.07	81.18±6.72	4	78.24±7.78	80.49±6.93	1,27±0.04
	2L	12	5.61	64.29±7.26	6	56.56±8.44	61.71±7.62	1.46±0.07
	8L	15	7.01	48.85±5.52	6	41.61±3.49	46.78±4.99	2.98±0.02

* Standard deviation, ** Long arm

bers of chromosome 8 showing the signals at the same region can be visualized in Fig. 2A.

The hybridization signals of Yi Dan 6 showed on the long arm of only one of two members for each of chromosome 1 (Fig. 2D), chromosome 2 (Fig. 2E), and chromosome 8 (Fig. 2F). No chromosome pair showed the signals simultaneously on their two homologues in all the mitotic cells observed. The detection rates of the signals were 6.07%, 5.61%, and 7.01%, and the percentage distances of the hybridization sites were 80.7 \pm 3.3, 60.4 \pm 2.9, and 45.2 \pm 4.4 for chromosomes 1, 2, and 8 respectively (Table 1). The control, maize, Zi330 did not show any hybridization signals on its chromosomes.

The signals observed by our fluorescence detection procedure showed yellow-green, while the chromosomes were red (Fig. 3). The blocking ratio was 1 labeled DP genomic DNA : 30 unlabeled maize Zi330 genomic DNA, just like that of DAB detection. The hybridization signals of the alloplasmic pure line 540 appeared on the long arm of chromosome 2 (Fig. 3A), chromosomes 1 and 5 (Fig. 3B and C), chromosome 8 (Fig. 3C). In some mitotic cells, the signals showed simultaneously on the two homologues of the detected chromosomes 1, 2, 5, and 8. Each of the two members of chromosome 2 showing the signals at the same region can be seen in Fig. 3A. The percentage distances from centromeres to the hybridization sites were 82.42 ± 4.45 , 62.85 ± 7.56 , 10.23 ± 3.32 , and 72.41 ± 1.12 for the long arms of chromosomes 1, 2, 5, and 8 correspondingly (Table 1).

Compared with the results obtained by DAB and FISH detection systems, the chromosomes introgressed by DP chromatins were the same and the signal positions showed on the detected chromosomes, the percentage distances were very close to each other and had no significant differences statistically in both the pure line 540 and Yi Dan 6. Therefore, we have constructed the cytogenetic maps of the introgressed segments in both pure line 540 and Yi Dan 6 with the average value of the data obtained by two kinds of detection methods (Table 1 and Fig. 4).

The detection rates observed by FISH were about 30% for each hybridization site of the pure line 540, and about 20% for Yi Dan 6 with the blocking ratio 1:30. There are much higher than those by DAB detection.

The hybridization signals of Yi Dan 6 showed on the long arm of chromosome 2 (Fig. 3D), chromosome 1 (Fig. 3E), and chromosome 8 (Fig. 3F). The signals only appeared on one member of each detected chromosome pair and no signals on the two members of a chromosome pair were observed simultaneously in all the mitotic cells observed. The percentage distances of the hybridization sites were 78.24±7.78, 56.56±8.44 and 41.61±3.48 for the

long arms of chromosomes 1, 2, and 8 respectively (Table 1).

No signals were observed on both the metaphase and interphase of the control, maize Zi330 (Fig. 3G and H).

In the pure line 540, the signals could be observed on two members of each detected chromosome pair, while in Yi Dan 6, only on one member. That the signals showed only on one member of each detected chromosome in Yi Dan 6 demonstrated that only one of its parents, 540, was introgressed, while the other, maize inbred line Zi 50003, had no introgressed DP chromatin at all. One member showing the signal must come from 540, the other from Zi50030 for chromosomes 1, 2, and 8.

It has been demonstrated that the stability of transgenes was related to the position integrated in transgenic plants (Jorgensen and Andersen 1994; Frello et al. 1995; Pedersen et al. 1997). Iglesias et al. (1997) reported that the transgenes integrated on the regions close to the telomeres were more stable. In 540, the alien chromatins of chromosomes 1, 2 and 8 were located in the regions close to the telomeres and their percentage distances from centromere to the hybridization site were over 70 (Table 1, Fig. 4), while those of chromosome 5 were located in the regions distal to the telomeres and the percentage distance was 13.42±2.07. In the genomes of both 540 and Yi Dan 6, the introgressed segments were located in the long arms on chromosomes 1, 2, and 8 except of chromosome 5 on which the signals only appeared in pure line 540 instead of Yi Dan 6. This meant that the DP chromatins integrated on chromosomes 1, 2, and 8 could be inherited stably, but the alien chromatins of chromosome 5 were unstable. Probably distant hybrids also follow the rule suggested by Iglesias et al. (1997) in transgenic plants. The alien chromatins integrated in regions distal to the telomeres on chromosome 5 might be lost during the processes of fertilization or hybrid seed production. Therefore, Yi Dan 6 had no signal on chromosome 5 at all.

In addition, the percentage distances of the signals showed smaller differences on chromosomes 1 (89.08 and 80.49) and 2 (71.37and 61.71), but they were more distinct on chromosome 8 (72.41 and 41.61) between 540 and Yi Dan 6 (Table 1). Because different regions of the chromosomes have varying states of condensation during the mitotic process, it is possible that the percentage distance of a giving hybridization site from the centromere will show some variation in different mitotic stages. For the differences of percentage distances on chromosomes 1 and 2 it could be explained by the fact that the observed samples could not be kept in the same mitotic stages between 540 and Yi Dan 6. Whether it was induced by chromosome rearrangement (translocation or inversion) or not in Yi Dan 6 for the larger position change on chromosome 8 remains to be studied.

In our laboratory, several important disease resistance genes of maize including *Helminthosporium turcicum* Pass, *Helminthosporium maydis* Nisik, and *Helminthosporium carbonum* Ullstrup resistance genes *ht, rhm* and *hm* with RFLP markers flanking each of them were mapped by in situ hybridization. The results showed that the hybridization site of *ht1* was between the percentage distances 61.78 and 63.01 on the long arm of chromosome 2 (Li et al. 1998a); the hybridization site of homologous sequence of *hm1* was located at 58.23 on the long arm of chromosome 5 (Li et al. 1998b); and that of the homologous sequences of *rhm* was positioned at percentage distances 65.06 and 72.40 on chromosomes 1 and 8 correspondingly (unpublished data). This demonstrated that all of the chromosome arms integrated by the alien chromatins had the distributions of the different disease resistance genes mentioned above in 540. Moreover, the sites of the disease resistance genes or their homologous sequences were very close to those of the alien chromatins on chromosomes 1, 2, and 8 except chromosome 5 on which the homologous sequence of *hm1* was located at percentage distance 58.23, while the alien chromatin was at 13.42 (Table 1). As mentioned above, both 540 and the F1 hybrids, Yi Dan 6, showed much stronger *Helminthosporium turcicum* and *Helninthosporium maydis* resistances and wider adaptation to stressful conditions. The regions integrated by DP chromatins basically corresponded to those located by

Fig. 4. Ideograms of the chromosomal locations of the introgressed chromatins in the tested materials. The integrated sites were indicated with percentage distances on the right of each chromosome. The percentage distances and arm ratios were averaged for DAB and fluorescence detection systems. The number at bottom is chromosome number. A. Inbred line 540 and B. Yidan 6.

Helminthosporium turcicum and Helminthosporium maydis resistance genes ht and rhm on chromosomes 1, 2, and 8. Therefore, we think genes ht and rhm between maize and DP should be homologous or homoeologous, and the DP chromatins were integrated by homoeologous or homologous recombination from crossing over during meiosis instead of random process in the hybrids of maize X DP. Because the unexpressed introns should have different sequences in the genes between DP and maize, the introgressed DP chromatins could not be blocked easily with the blocking ratio 1 : 30. Because the differences of the introns between DP and maize were not absolute, the integrated DP chromatins were still blocked to a certain degree by maize genomic DNA with a high blocking ratio. Therefore, the signals of DP chromatins could not be detected completely with 1:40 and 1:50 blocking ratios. DP is interfertile with maize (Iltis et al. 1979), during meiosis the synapsis of their hybrids should be normal basically. Thus, many DP chromosome fragments or genes besides genes ht and rhm should be able to be integrated in the maize genome by crossing over. The alloplasmic pure line 540 was obtained by selection through several generations. As a result, it only showed the integration sites which were mainly corresponding to the loci of disease resistance genes in maize.

The breeding of alloplasmic pure lines, which showed disease resistance traits, offered us a new opportunity for establishing the specific gene library and isolating genes or chromatins specifying important agricultural characters, for example, resistance to disease and pests from wild germplasm by microdissection of the special regions on chromosomes. Based on our results with GISH, the establishment of the specific library containing genes *ht* and *rhm* of DP and their isolation could probably be performed by the microdissection of the DP integrated sites on the chromosomes of 540 or Yi Dan 6.

Acknowledgments: This research was supported by the National Natural Science Foundation in China and the Doctorate Vesting Point Foundation of the Education Ministry of the People's Republic of China

ZARIA, NIGERIA Ahmadu Bello University

Induced multiple ear mutants in popcorn (Z. mays var. praecox Sturt.)

--Adamu, AK

The study was carried out with the objective of inducing beneficial mutants. Air dried seed of popcorn (*Z. mays* var. *praecox* Sturt.) was irradiated with gamma-rays cobalt 60 at the following doses 10, 20, 30, 40, and 400Gy and Thermal Neutrons (5 curie 241AM/Be neutron source flux 1.5×10^4 n.cm⁻²S⁻¹) at 25, 40, 50, 60 minutes and 12 hours. Result obtained indicated an increase in the number of ear induced per plant in both M1 and M2 generations and the increase was in direct proportion to the dose for both gamma-rays and thermal neutrons. The number of ears induced in the M1 generation ranges from zero (none) to five and in some, up to 6 ears per plant. The frequency of occurrence in the M2 generation of these mutants was relatively low when compared with the M1 generation.

Gamma-ray (⁶⁰CO) and thermal neutron induced tassel seed and male sterile mutants in popcorn (*Z. mays* var. praecox Sturt.) --Adamu. AK

Male sterility is an important tool, which may effectively eliminate hand emasculation in genetic improvement. Air dried seed were irradiated with different doses of gamma-rays and thermal neutrons, with the aim of inducing male sterile mutants. The different types of mutants induced were plants developing seeds on tassels (tassel seed). "Highly Sterile" are plants whose tassels were completely turned into female ears (unisexual mutants) and are usually seed sterile. Partially "Sterile" mutants are plants with ears on the normal part of the stem and an additional ear in place of tassels. The appearance of the different categories of male sterile mutants tends to increase with dose in both gammaray and thermal neutron treatment. However, only about 4% of the M1 male sterile mutants induced were transmitted to the M2 generation.

III. ADDRESS LIST

(Most-current addresses are available on the web (http://www.agron.missouri.edu/))

Abedon, Bruce; Rhodes College; 2000 North Parkway; Memphis TN 38112; 901-843-3431; 901-843-3565 (fax); abedon@rhodes.edu Adams, Karen R.; 2837 E. Beverly Dr.; Tucson AZ 85716-5716; 520-326-8994 Adamu, A. Kasim; Department of Biological Sciences; Ahmadu Bello University; Zaria; NIGERIA; 069-50581 ext. 108; 234 69 50891 (fax) Agrama, Hesham A; Agronomy Department; 2004 Throckmorton; Kansas State University; Manhattan KS 66506-5501; 785-532-6796; 785-532-6094 (fax); hagrama@ksu.edu

Aguiar-Perecin, Margarida; Dept Genetica - ESALQ; Universidade de S. Paulo; 13400-970 Piracicaba, SP; BRAZIL; 55 (0) 19 429 4125; 55 (0) 19 433 6706 (fax); mlrapere@carpa.ciagri.usp.br

Akamatsu, Toyokazu; Sakata Seed Corp; Plant Biotechnology Center; 358 Uchikoshi Sodegaura City Chiba; JAPAN; 0438-75-2369; 0438-75-2594 (fax) Albertsen, Marc C.; Pioneer Hi-Bred International; 7300 N.W. 62nd Ave., Box 1004; Johnston IA 50131-1004; 515-270-3648; 515-253-2149 (fax); ALBERTSNM@PHIBRED.COM

Alexander, Danny; Novartis Corp; 3054 Cornwallis Rd.; Research Triangle Park NC 27709-2257; 919-541-8687; 919-597-3036 (fax); danny.alexander@nabri.novartis.com

danny,alexander@nabn.novarius.com
Alfenito, Mark; 61 Avondale Ave; Redwood City CA 94062; 650-368-1206; alfenito@targetquest.com
Alleman, Mary; 253 Mellon Hall; Duquesne University; Dept. Biol. Sci.; Pittsburgh PA 15282; 412-396-1660; 412-396-5907 (fax); ALLEMAN@DUQ.EDU
Allen, Jim; Department of Biological Sciences; Florida Internatl Univ; Miami FL 33199; 305-348-6632; 305-348-1986 (fax); allenjo@fiu.edu
Altosaar, Illimar; Department of Biochemistry; University of Ottawa; 40 Marie Curie Private; Ottawa, Ontario K1N 6N5; CANADA; 1-613-562-5800 Ext. 6374; 1-613-562-5180 (fax); altosaar@oreo.chem.uottawa.ca
Alvey, David; 237 Myrtle Drive; W. Lafayette IN 47906; 765-567-2115; 765-567-4046 (fax)
Amano, Etsuo; Biol Resources Res & Dev Centre; Fukui Prefectural Univ; 88-1, Futaomote, Awara-cho, Sakai-gun; Fukui-ken, 910-41; JAPAN; 81-776-77-1443; 81-776-77-1448 (fax); amano@fpu.ac.jp
Anaojew, Europeir, Pilosed, Intil, Inc. 7300 NW, 62nd Ave; PO, Box 1004; Jobston JA, 50131-1004; 515-253-2477/5740; 515-270-3367, (fax);

Ananiev, Evgueni; Pioneer Hi-Bred Int'l Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2477/5740; 515-270-3367 (fax);

Anlantev, Evglerin, Fronteer In-Brod Internation, Food Internation

charles.Larmstrong@monsanto.com Arpat, Hacimurat; Ohio State University; OARDC, Dept of Agronomy; 1680 Madison Avenue; Wooster OH 44691-4096; 330-263-2682; 330-263-3658 (fax) Arruda, Paulo; Univ. Estadual de Campinas; Cidade Univ. Zeferino Vaz; Distrito de Barao Geraldo; Campinas - SP; BRAZIL; (192)398351; (192)394717 (fax) Arthur, Lane; Life Cycle Information Management; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004; arthurwl@phibred.com Artim-Moore, Lori; Ciba-Ag Biotechn; PO Box 12257; Research Triangle Park NC 27709 Atanassov, A.; Institute of Genetic Engineering; 2232 Kostinbrod 2; BULGARIA; 359.0721.2552; 359.721.4985 (fax); atanos@icgeb.trieste.it Auger, Donald L.; Biol Sci; Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); dauger@biosci.mbp.missouri.edu Ayala-Osuna, Juan; Rua Dos Trabalhadores 906; 14870.000 Jaboticabal-SP; BRAZIL; 016-3220260; 016-3224275 (fax) Aycock, Harold S; Cornnuts Genetic Research; P.O. Box 215; Greenfield CA 93927; 831-674-3131; 831-674-5139 (fax); aycockh@nabisco.com Ayers, John E; Dept Plant Pathology; 308 Buckhout Lab; Pennsylvania State Univ; University Park PA 16802; 814-865-7776; 814-863-7217 (fax); jea@psu.edu Azanza, Fermin; Novartis Seeds; Field Crops Europe Biotech Dept; 12 Chemin de l'Hobit; B.P. 27 - 31790 Saint-Sauveur; FRANCE; (33)5.62.79.98.09; (33)5.62.79.99.96 (fax): formin azanza@seeds novartis com

(fax); fermin.azanza@seeds.novartis.com

Bai, Yongyan; Inst. of Plant Physiol.; 300 Fengling Road; Shanghai 200032; CHINA Bailey II. J. Clinton; Biol Sci; 324 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); cbailey@mail.biosci.missouri.edu Bailey I.J. Clinton; Biol Sci; 324 Tucker Hall; Univ Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); cbailey@mail.biosci.missouri.edu Bailey-Serres, Julia; Botany & Plant Sciences; Batchelor Hall; Univ. Calif. Riverside; Riverside CA 92521; 909-787-3738; 909-787-4437 (fax); SERRES@UCRAC1.UCR.EDU

SERRES@UCRAC1.UCR.EDU Bairoch, Amos; Centre Medicale Universitaire; 1211 Geneva 4; Geneva; SWITZERLAND; 41-22-784-40-82; BAIROCH@cmu.unige.ch Baker, Barbara; USDA; Plant Gene Expression Center; 800 Buchanan Street; Albany CA 94710; 510-559-5912; 510-559-5678 (fax); bbaker@garnet.berkeley.edu Ball, Dale W.; Wilson Seeds, Inc.; P.O. Box 391; Harlan IA 51537; 712-755-3841; 712-755-5261 (fax); bballmaize@aol.com Bar-Zur, Avri; Moshava; P.O. Box 32; Yokneam 20600; ISRAEL; 972-4-989-4026; 972-4-985-3291 (fax) Barbour, Eric; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004 Barkan, Alice; Institute of Molecular Biology; University of Oregon; Eugene OR 97403; 541-346-5145; 541-346-5891 (fax); abarkan@molbio.uoregon.edu Barros, MEC; PO Box 395; Pretoria, 0001; SOUTH AFRICA; 27-12-841-3221 Bass, Hank W.; Dept Biol Sci; Biology Unit 1, Chieftan Way; Florida State Univ; Tallahassee FL 32306-4370; 850-644-9711; 850-644-0481 (fax); bass@bio.fsu.edu Baszczynski, C. L.; Pioneer Hi-Bred International, Inc.; 7250 N.W. 62nd Avenue; P.O. Box 552; Johnston IA 50131-0552; (515)270-3693; (515)334-4729 (fax); BASZCZYNSKI@PHIBRED.COM BASZCZYNSKI@PHIBRED.COM

Bates, Lynn S.; Alteca Ltd.; 731 McCall Road; Manhattan KS 66502; 913-537-9773; 913-537-1800 (fax); alteca@kansas.net

Bates, Lynn S.; Alteca Ltd.; 731 McCall Hoad; Mannattan KS 66502; 13-537-973; 913-537-1800 (tax); alteca@kansas.net Baysdorfer, Chris; Biological Sciences; California State U; Hayward CA 94542; 510-885-3459; 510-888-4747 (fax); 72652.662@CompuServe.COM Beach, Larry; Pioneer Hi-Bred Internati; PO Box 1004; Johnston IA 50131-9410; 515-270-3798; 515-270-3367 (fax); beach@phibred.com Beavis, Bill; Nat Center for Genome Resources; 1800-A Old Pecos Trail; Santa Fe NM 87505; 800-450-4854x4412; 505-995-4432 (fax); wdb@ncgr.org Beckert, M.; INRA Station D'Amelioration des Plantes; 63039 Clermont Ferrand; FRANCE; (33)73 624319; (33)73 624453 (fax); beckert@clermont.inra.fr Beckett, Jack; 607 Longfellow Lane; Columbia MO 65203-1630; 573-445-3472; 573-884-7850 (fax) Beccaft, Philip; Zoology & Genetics/Agronomy Depts; 2116 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-2903; 515-294-0345 (fax); becketDirectedu becraft@iastate.edu

Bedinger, Patricia; Biology Dept; Colorado State Univ.; Fort Collins CO 80523-1878; 970-491-2879; 970-491-0649 (fax); bedinger@lamar.colostate.edu Belanger, Faith; Dept of Crop Science; Cook College, Lipman Hall; Rutgers University; New Brunswick NJ 08816; 908-932-8165; belanger@aesop.rutgers.edu Bell, Duane; 304 Pearl St.; Blissfield MI 49228; (517)486-3520; (517)486-2631 (fax)

Benner, Michael; Science and Technology Center; Rider University; 2083 Lawrenceville Rd; Lawrenceville NJ 08648-3099; 609-896-5097; 609-895-5782 (fax); benner@rider.edu

Bennett, Michael; Jodrell Laboratory; Royal Botanic Gardens; Kew, Richmond; Surrey, TW9 3AB; UNITED KINGDOM; 44-1181-332-5000; 44-1181-332-5310 (fax);

Bennett, Michael; Jodrell Laboratory; Royal Botanic Gardens; Kew, Richmond; Surrey, TW9 3AB; UNITED KINGDOM; 44-1181-332-5000; 44-1181-332-5310 (fax); M.Bennett@rbgkew.org.uk
Bennetzen, Jeff; Dept of Biological Sciences; Purdue University; W. Lafayette IN 47907-1392; 765-494-4763; 765-496-1496 (fax); Maize@bilbo.bio.purdue.edu
Bensen, Robert; Pioneer Hi-Bred Int'l Inc.; 7300 NW 62nd Ave., P.O. Box 1004; Johnston IA 50131; 515-270-3645; 515-253-2149 (fax)
Benzion, Gary; 303 W. Lanvale St.; Baltimore MD 21217; 703-308-1119; benzion@USPTO.GOV
Bergquist, Richard R.; 401 East Sixth Street; El Paso IL 61738; 309-527-6000
Bergvinson, David; CIMMYT; Apdo. Postal 6-641; 06600 Mexico, DF; MEXICO; 525-726-9091; 525-726-7558 (fax); DBERGVINSON@ALPHAC.CIMMYT.MX
Berke, Terry; Box 42; Shanhua; Tainan, Taiwan 741; REPUBLIC OF CHINA; 8866 583 7801; 8866 583 0009 (fax); TERRY@NETRA.AVRDC.ORG.TW
Berlyn, Mary; Dept. of Biology; Yale University; New Haven CT 06520; 203-432-3997; 203-432-3854 (fax); mary@fetalpig.biology.yale.edu
Bernardo, Rex; Dept of Agronomy; Purdue University; 1150 Lilly Hall Life Sci; West Lafayette IN 47907-1150; 765-494-8088; 765-496-2926 (fax); bernardo@purdue.edu bernardo@purdue.edu

Bernot, John; Dept. of Biological Sciences; Duquesne University; Pittsburg PA 15282 Berthaud, Julien; UR 31 Centre ORSTOM; 911, Avenue Agropolis; BP 5045; 34032 Montpellier cedex; FRANCE; 33(0)467 41 6165; 33(0)467 54 7800 (fax); julien.berthaud@mpl.orstom.fr

Bertrand, Ralph L.; 14 E Cache La Poudre; Dept. of Biology; Colorado College; Colorado Springs CO 80903; (719)389-6402; (719)389-6940 (fax);

rbertrand@cc.colorado.edu

Berville, A.; INRA; Station d'Amelior des Plantes; 2 Place Viala; 34060 Montpellier Cedex; FRANCE

Bhattramakki, Dinakar; DuPont Ag Products; Delaware Technical Park, Suite 200; PO Box 6104; Newark DE 19714-6104; 302-733-8815; 302-631-2607 (fax); bhatt2d@cdcIn05.lvs.dupont.com

bhatt2d@cdcln05.lvs.dupont.com Bianchi, Angelo; Ist Sper Cerealicoltura; Via Cassia 176; 00191 Rome; ITALY; 06-3295705; 06-3630-6022 (fax) Biradar, Madhuri; 320 ERML, Crop Sci; Univ. of Illinois; 1201 W. Gregory; Urbana IL 61801 Birchler, James; Biological Sciences; Tucker Hall; University of Missouri; Columbia MO 65211; 573-882-4905; 573-882-0123 (fax); birchler@biosci.mbp.missouri.edu Bird, Robert; 1211 Dogwood Lane; Raleigh NC 27607; 919-787-8452; rmckbird@earthlink.net Bjarnason, Magni; IM Aufeld 5; D-77815 Buehl; GERMANY; 49-7227-5691; 49-7227-5691 (fax); bjarnason@t-online.de Blakey, Cynthia Ann; Cooper Science Bldg; Dept. of Biology; Ball State University; Muncie IN 47306; 765-285-8820; 765-285-2351 (fax); ablakey@gw.bsu.edu Blewitt, Michael; Brookhaven National Lab; Bldg. 463; Upton NY 11973 Bocanski, Jan; Faculty of Agriculture; Univ of Novi Said; 21000 Novi Sad; YUGOSLAVIA; bocanski@polj.ns.ac.yu Bogorad, Lawrence; Biol Labs; Harvard Univ; 16 Divinity Ave; Cambridge MA 02138; 617-495-4292; 617-495-4292 (fax); bogorad@biosun.harvard.edu Bokde, S.; 599 Laurel Ave. #3; St. Paul MN 55102-2047 Bollman, Krista; Dept. of Biology; Plant Science Institute; University of Pennsylvania; Philadelphia PA 19104-6018 Bommineni, Venkat R; Agritope, Inc; 16160 SW Upper Boones Ferry Rd; Building C; Portland OR 97224-7744; 503-670-7702; 503-670-7703 (fa

Bommineni, Venkat R; Agritope, Inc; 16160 SW Upper Boones Ferry Rd; Building C; Portland OR 97224-7744; 503-670-7702; 503-670-7703 (fax); venkat@agritop.com

Borovskii, Genadii; Siberian Inst Plant Physiol Biochem; P.O. Box 1243; Irkutsk-33, 664033; RUSSIA; root@sifibr.irkutsk.su

Bosch, Lluis; Escola Superior d'Agricultura; Comte d'Urgell, 187; 08036 Barcelona; SPAIN; 3-4304207; 3-4192601 (fax) Boston, Rebecca S.; Box 7612; Dept Botany; North Carolina State Univ; Raleigh NC 27695-7612; (919)515-2727; (919)515-3436 (fax); boston@unity.ncsu.edu Bouchard, Robert A.; College of Wooster; Biology Dept.; Wooster OH 44691; 330-263-2433; 330-263-2378 (fax); rbouchard@acs.wooster.edu Bowen, Ben; Lynx Therapeutics, Inc; 25861 Industrial Boulevard; Hayward CA 94545; 510-670-9441; 510-670-9302 (fax); ben@ynxgen.com

Boyer, Charles D.; Dept. of Horticulture; Oregon State University; Ag & Life Sciences 4017; Corvallis OR 97331-7304; 503-737-5474 Brakke, Myron; Box 57, Route 1; Crete NE 68333-9606; 402-826-5569; PATH010@UNLVM.UNL.edu Brar, Gurdip; Monsanto Co.; 8520 University Green; Middleton WI 53562; 608-821-3483; 608-836-9710 (fax); gsbrar@monsanto.com Braun, David; Dept Plant Biology; 111Koshland; Univ California; Berkeley CA 94720; 510-642-8058; 510-642-4995 (fax); dbraun@nature.berkeley.edu Breto, Paz; Pioneer Hi-Bred Int. Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004

Brettell, Richard; CSIRO Div Plant Industry; P.O. Box 1600; Canberra City ACT 2601; AUSTRALIA; 062-46-5581; dick@pican.pi.csiro.au Bretting, Peter K.; USDA/ARS, NPS; 5601 Sunnyside Ave.; Bldg. 4, Room 2212; Beltsville MD 20705-5139; 301-504-5541; 301-504-6191 (fax); pkb@ars.usda.gov Brewbaker, James; Horticulture; Univ of Hawaii; 3190 Maile Way; Honolulu HI 96822; 808-956-7985; 808-956-3894 (fax); brewbake@Hawaii.Edu Briggs, Kristen; Pioneer Hi-Bred Internat Inc; Trait and Technol Development; 7300 NW 62nd Ave PO Box 1004; Johnston IA 50131-1004; 515-254-2623; 515-254-

Briggs, Kristen; Pioneer Hi-Bred Internat Inc; Trait and Technol Development; 7300 NW 62nd Ave PO Box 1004; Johnston IA 50131-1004; 515-254-2623; 5

Brucewb@phibred.com

Bruggemann, E; Pioneer Hi Bred Inti; 7250 NW 62nd Ave; PO Box 1000; Johnston IA 50131-1000; 515-270-4143; 515-334-4788 (fax); bruggeep@phibred.com Brutnell, Thomas P.; Dept Plant Sci; University of Oxford; South Parks Road; Oxford, OX1 3RB; UNITED KINGDOM; 011-44-1865-275030; 011-44-1865-275147

(fax); tom.brutnell@plant-sciences.oxford.ac.uk

Bubeck, David; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308; (507)663-7666 Buckler, Carlyn S. Keith; Dept Statistics; North Carolina State Univ; Box 8203; Raleigh NC 27695-8203

Buckler, Edward; Dept Statistics; North Carolina State Univ; Box 7614; Raleigh NC 27695-7614; 919-513-1475; 919-515-3355 (fax); buckler@statgen.ncsu.edu Buckter, Edward; Dept Statistics; North Carolina State Univ; Box 7614; Haleigh NC 27695-7614; 919-513-1479; 919-513-355 (rax); buckter@statgen.ncsu.edu Buckner, Brent; Div. Science, Science Hall; Truman State Univ; 100 East Normal; Kirksville MO 63501-4221; 816-785-4083; 816-785-4045 (fax); bbuckner@truman.edu Bullock, W. Paul; Garst Seeds Company; 2369 330th St; P.O. Box 500; Slater IA 50244; 515-685-5116; 515-685-5080 (fax); paul.bullock@garstseedco.com Bureau, Thomas; Dept. of Genetics; University of Georgia; Athens GA 30602 Burr, Benjamin; Biology Dept; Brookhaven National Lab; Bldg 463; Upton NY 11973; 631-282-3396; 631-282-3407 (fax); burr@bnl.gov Burr, Frances; Brookhaven National Lab; Bldg 463; Upton NY 11973; 631-344-3396; 631-344-3407 (fax); burr@bnl.gov Bushan, B. Shaun; 302 Curtis Hall; Univ Missouri; Columbia MO 65211; 573-882-2033; shaun@teosinte.agron.missouri.edu

Bushman, B. Shaun; 302 Curtis Hall; Univ Missouri; Columbia MO 65211; 573-882-2033; shaun@teosinte.agron.missouri.edu Butler, Lou; Dept of Agronomy; Curtis Hall; Univ of Missouri; Columbia MO 65211; 573-882-2674; ButlerL@missouri.edu Butnaru, Gallia; Univ Stiinte Agricole A Banatului; Disciplina de Genetica; C. Post 136, O.P. 1; Timisoara 1900; ROMANIA; 40.56.141424; 40.56.200296 (fax) Byrne, Mary; Cold Spring Harbor Laboratory; PO Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); byrne@cshl.org Byrne, Patrick; Dept Soil and Crop Sci; Colorado State Univ; FI Collins CO 80523; 970-491-6985; 970-491-6985; 970-491-6986; 104-064-311680; 040-064-311134 (fax) Cabulea Iancu, I.; Library; Agric Res Station; Str. Agriculturii 27; Turda R03350; ROMANIA; 040-064-311680; 040-064-311134 (fax) Caldwell, Elizabeth E. Oberthur; 4505 Regal Ave NE; Cedar Rapids IA 52402-2143; 319-335-8333 Callis, Judy; Section of Molecular and Cellular Biol.; Univ of CA; Davis CA 95616; (916)752-1015; (916)752-3085 (fax); JCallis@ucdavis.edu Camara-Hernandez, J.; Altolaguirre 1295; Buenos Aires 1427; ARGENTINA; 54-1-521-6464; 54-1-522-1687 (fax) Camargo, Luiz; Depto. Fitopatologia -ESALQ/USP; C.P. 09; 13418-900 Piracicaba-SP; BRAZIL; 55-194-294124; 55-194-344839 (fax); Ieacamar@carna.cianri.usp.br leacamar@carpa.ciagri.usp.br Campbell, Wilbur H.; Dept. of Biological Sciences; Michigan Technological Univ.; 1400 Townsend Drive; Houghton MI 49931-1295; 906-487-2214; 906-487-3355 (fax); WCAMPBEL@MTU.EDU

WCAMPBEL@MTU.EDU Camussi, Alessandro; Genetic Unit - Fac of Agriculture; Via S. Bonaventura 13; I-50129 Firenze; ITALY Cande, Zac; Dept of Molec & Cell Biology; Box 341 LSA; Univ of California; Berkeley CA 94720-3200; 510-642-1669; 510-643-6791 (fax); zcande@uclink4.berkeley.edu Cardinal, Andrea J.; Agronomy Hall 1571; Iowa State Univ; Ames IA 50011; 515-294-3635; 515-294-3163 (fax); cardinal@iastate.edu Carlson, Lawrence A.; 7 North Winthrop Street; St. Paul MN 55119-4674; 612-738-8812; carls245@tc.umn.edu Carlson, Wayne; Dept. of Biol. Sci.; University of Iowa; Iowa City IA 52242; (319)335-1316; (319)335-3620 (fax); wayne-carlson@uiowa.edu Carlson, Newton; University of Arizona; 3401 N. Columbus Blvd, 16F; Tucson AZ 85721; 520-325-9186 Carson, Chris; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-0832; 573-884-7850 (fax); carson@teosinte.agron.missouri.edu Carson, Martin L.; Dept. Plant Pathology; Box 7616; NCSU; Raleigh NC 27695-7616; (919)515-3516; (919)515-7716 (fax) Carvalho, Carlos Roberto de; Universidade Federal de Vicosa; Depto Biologia Geral; 36571.000 Vicosa - MG; BRAZIL; 31-899-2568; 31-899-2203 (fax); carvalho@mail.ufv.br

ccarvalh@mail.ufv.br

Causse, Mathilde; Station de Genetique Vegetale; Ferme du Moulon; 91190 Gif/Yvette; FRANCE; 33 1 6941 6727; 33 1 6941 2790 (fax); causse@moulon.inra.fr Chalyk, Sergey; M. Spataru 1, Box 134; Kishinev 2075; MOLDOVA; 37-32-78-83-67; 37-32-55-61-80 (fax); schalyk@hotmail.com Chan, Annette; Dept. of Plant Biology; 345 LSA; University of California; Berkeley CA 94720-3102; 510-643-8277; 510-643-6791 (fax); ACHAN@UCLINK3.BERKELEY.EDU

Chandler, Vicki; Dept Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-626-8725; 520-621-7186 (fax); chandler@ag.arizona.edu Chandrakanth, E.; Crop Biotechnology Center; Texas A&M Univ; College Station TX 77843; 409-260-4563 Chang, Ming-Tang; ExSeeds Genetics L.L.C.; 1567 Food Sciences Bldg.; Iowa State Univ.; Ames IA 50011-1061; 515-294-2993; 515-294-2644 (fax);

mingchang@ames.net Chang, S. C.; 13, LN36, Chung Shan Rd.; Chiayi, ROC; TAIWAN; 05-278-4603 Chao, Shiaoman; Centre Plant Conserv Genetics; Southern Cross Univ; PO Box 157; Lismore NSW 2480; AUSTRALIA; 61 2-6620-3485; 61 2-6620-2080 (fax)

Charlton, Wayne: Rodney Porter Building: Dept. of Plant Sciences; University of Oxford, South Parks Road; Oxford, OX1 3RB; UNITED KINGDOM; 44-1865-275814;

Charlon, Wayne; Houney Foller Building, Dept. of Hant Colonect, Grances, Gr

ctdc@gnv.ifas.ufl.edu Chase, Sherret S.; Chase Road; P.O. Box 193; Shokan NY 12481; 914-657-2392 Chen, Fure-Chyi; Dept. Plant Industry; National Pingtung Polytechnic Inst; Neipu, Pingtung 91207; TAIWAN; 886-8-774-0267; 886-8-774-0264 (fax) Chen, Jychian; Institute of Molec Biol; Academia Sinica; Taipei 11529; TAIWAN; 011-8862-2789-9208; 011-8862-2782-6085 (fax); mbjchen@ccvax.sinica.edu.tw Chen, Shouyi; Academia Sinica; Institute of Genetics; Datun Road, Andingmen Wai; Beijing, 100101; CHINA Chen, Weicheng; Dept. of Agronomy; Henan Agric. University; ZhengZhou 450002; CHINA Cheng, Kan-Sheng; Yunnan Academy of Agricultural Sciences; Kunming; Yunnan 650205; CHINA Cheng, Ping-chin; Advanced Microscopy and Imaging Lab; Dept Elect Comp Eng, 201 Bell Hall; State University of New York at Buffalo; Buffalo NY 14260; (716)645-3868; (716)645-3868 (fax); elepcc@corn.eng.buffalo.edu

Stabs; (716)645-3868 (fax); elepto@com.eng.buttato.edu Cheng, Ruiyang; Nankai University; Biology Division; Plant Molecular Biology Dept.; Tianjin 300071; CHINA Chernov, Alex; Institute of Genetics; Acad Sci Mold Repub; Kishinev; MOLDOVA; a chernov43@hotmail.com Chilton, Scott; Dept of Botany; Box 7612; N. C. State University; Raleigh NC 27695-7612; (919)515-3792; (919)515-3436 (fax); schilton@unity.ncsu.edu Choe, Bong-Ho; Agronomy Dept; College of Agriculture; Chungnam National University; Dae-Jon 305-764; KOREA; KOREA-042-821-5723; 82-42-823-8050 (fax) Choi, Keun-Jin; Dept. of Corn Breeding; Upland Crop Div.; Crop Experiment Station; Suwon; KOREA; (0331)292-3823; (0331)292-4560 (fax) Choick, Jan; Plant Bioscience Limited; Norwich Research Park; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-(0)1603-456552 (fax);

aisc@plantbioscience.com

Chomet, Paul; DeKalb Plant Genetics/Monsanto; 62 Maritime Drive; Mystic CT 06355-1958; 860-572-5224; 860-572-5282 (fax); PCHOMET@DEKALB.COM Chongkid, Boonhong; Dept. of Agricultural Technology; Fac. of Science & Technology; Thammasat Univ., Rangsit Campus; Pathum Thani 12121; THAILAND; 5160020-39 ext. 1712, 1713; 5160963 (fax)

Chopra, Surinder; 2204 Molecular Biology Building; Iowa State University; Ames IA 50011; (515)294-5054; (515)294-0345 (fax); chopra@iastate.edu Chourey, Prem; USDA-ARS; Plant Pathology Department; University of Florida; Gainesville FL 32611-0680; 352-392-2806; 352-392-6532 (fax); PSCH@GNV.IFAS.UFL.EDU

Choizey, Prem; USDA-ARS; Plant Pathology Department; University of Florida; Gainesville FL 32611-0680; 352-392-2806; 352-392-6532 (fax); PSCH@GMV.IFAS.UFL.EDU
 Chuck, George; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); gchuck@nature.berkeley.edu
 Chuck, George; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5922; 510-559-5678 (fax); gchuck@nature.berkeley.edu
 Clark, Janice K.; Dept. of Biology; University of North Dakota; Grand Forks ND 58202-9019; (701)777-2623 (fax); janclark@plains.nodak.edu
 Clark, Janice K.; Dept. of Biology; University of North Dakota; Grand Forks ND 58202-9019; (701)777-2621; (701)777-2623 (fax); IMCLOSE@UCRAC1.UCR.EDU
 Clutter, Mary, BlO/BIO; National Science Foundation Room 605N; 4201 Wilson Blvd.; Arlington VA 2230; 703-306-1400; moluter@note.nsf.gov
 Cocciolone, Suzy; 2288 Molecular Biology Building; Iowa State University; Ames IA 50011; 515-294-5054; 515-294-0345 (fax); coccio@lastate.edu
 Coelasant, Joseph J; Liniv California-Berkeley; PECC; 800 Buchanan Street; Albany CA 94710; 510-559-5678 (fax); colasant@uclink4.berkeley.edu
 Colasant, Joseph J; Univ California-Berkeley; PECC; 800 Buchana Street; Albany CA 94710; 510-559-5678 (fax); colasant@uclink4.berkeley.edu
 Colbert, Terry; Pioneer Hi-Bred Int., Inc; RR1 P.O. Box 90-I; Princeton IN 47670; colberttr@phibred.com
 Colless, J, Mi, Agric Research Sta; Grafton, NSW 2460; AUSTRALIX, Goe-420420; 066-447251 (fax);
 Cone@biosci.mbp.missouri.edu
 Cook, Bill; Biologi Depatiment; Midwestern State University; 3410 Taft Bivd; Wichita Falls TX 76308; 940-397-4142 (fax); fcookb@nexus.mwsu.edu
 Cooper, Pamela S; Univ. of Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-118; 573-882-0123 (fax); cose@diastaft.wisc.edu
 Coore, Famela S; Univ. of Missouri; 105 Tucker Hall; Columbia MO 65211; 573-882-118; 5

rgcreech@ra.msstate.edu Culley, David; 24106 N. Bunn Rd; Prosser WA 99350; 509-786-9236/9241; dculley@tricity.wsu.edu Cummings, D. P.; Dekalb Genetics Corporation; P.O. Box 367; 908 North Independence; Windfall IN 46076-0367; 317-945-7125; 317-945-7152 (fax) Currie, Randall; SWREC; 4500 E. Mary; Garden City KS 67842; 316-276-8286; 316-276-6028 (fax); RCURRIE@OZNET.KSU.EDU D'Halluin, Kathleen; Plant Genetic Systems N.V.; Jozef Plateaustraat 22-B 9000; Gent; BELGIUM; (32) (9)2358486; (32) (9)2240694 (fax); pgs@pgsgent.be Damerval, Catherine; Station de Genetique Vegetale; Ferme du Moulon; 91190 Gif Sur Yvette; FRANCE; (1)01 69 33 23 66; 33(1)01 69 33 23 40 (fax) Dankov, Toma; Ivan Assen Str.-93; Sofia 1124; BULGARIA; 43-82-73; nedeva@biofac.uni-sofia.bg Daohong, Xie; Maize Research Institute; Jilin Acad.; 5 W. Xing Hua Street; Gongzhuling, Jilin, P.R. 136100; CHINA; (86)-04441-215179; (86)-04441-214884 (fax) Darrah, Larry; 110A Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2349; 573-884-7850 (fax); agrolld1@showme.missouri.edu Davis, Georgia; Biol Sci - 403A Tucker Hall; University of Georgia; Athens GA 30602; 706-542-1658; 706-542-1805 (fax); kelly@dogwood.botany.uga.edu Daw, P. Kelly; Department of Botany; University of Georgia; Athens GA 30602; 706-542-1658; 706-542-1805 (fax); kelly@dogwood.botany.uga.edu Day, Peter R.; Center for Ag Molec Biology; Cook College, Rutgers Univ; Foran Hall, Ducley Road; New Brunswick NJ 08903-0231; 908-932-6535 (fax); day@aesop.rutgers.edu

day@aesop.rutgers.edu De Leon, Carlos; Maize Program; c/o CIAT; Apdo. Aereo 67-13; Cali; COLOMBIA De Oliveira, Antonio Costa; Centro de Biotecnologia, Predio 19; Campus UFPel, P.O. Box 354; 96001-970, Pelotas, RS; BRAZIL; 055532757158; 055532759031 (fax); acosta@ufpel.tche.br

de Wolff, F; Advanta Seeds B.V.; PO Box 1; 4410 AA Rilland; NEDERLAND; 31-1135-2151; 31-1135-2237 (fax) Dean, Caroline; BBSRC; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 011-44-1603-452571; 011-44-1603-505725 (fax); caroline.dean@bbsrc.ac.uk

caroline.dean@bbsrc.ac.uk Dean, Ralph; Dept Plant Path & Physiol; Clemson Univ; Clemson SC 29634; 864-656-5737; 864-656-4293 (fax); rdean@clemson.edu DeBroux, Steve; 700 E. Butler Ave.; Delaware Valley College; Doylestown PA 18901; 215-345-1500; 215-345-5277 (fax) Delannay, Xavier; Monsanto - N3SB; 800 N. Lindbergh Blvd.; St. Louis MO 63167; 314-537-6611; 314-694-3644 (fax); x.delannay@monsanto.com Dellaporta, Steve; Yale University; Molec Cell Devel Biol; New Haven CT 06520-8104; 203-432-3895; 203-432-3854 (fax); stephen.dellaporta@yale.edu Delzer, Brent; Novartis Seeds Inc; 4133 E County Road "O"; Janesville WI 53546; 608-757-1102; 608-757-0080 (fax); brent.delzer@seeds.novartis.com DeMason, Darleen; Botany & Plant Sciences; Univ of California; Riverside CA 92521; 909-787-3580; 909-787-4437 (fax); demason@ucrac1.ucr.edu Dempsey, Ellen; 7 Prospect St; Cornwall-on-Hudson NY 12520; 914-534-5285 Deutsch, James A.; ICI Seeds, Inc.; RR2; Box 16; Marshall MO 65340; 816-886-6363; 816-886-9877 (fax) Dewald, Chester L.; ARS-USDA; 2000 18th St.; Woodward OK 73801; 580-256-7449; 580-256-1322 (fax); sdewald@ag.gov Dhillon, B. S.; CIMMYT, Maize Program; Apartado Postal 6-641; C.P. 06600 Mexico, D.F.; MEXICO; (5)726-90-91; (595)410-69 (fax) Dietrich, Chuck; B420 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); bones@iastate.edu Dijkhuizen, Arian; W-203 Turner Hall; 1102 South Goodwin Ave.; Urbana IL 61801; 217-244-3388; 217-333-9817 (fax) Dille_John E.; Winthrop College Biology Deot; Rock Hill SC 29733; 803-323-2111; 803-323-3448 (fax); dillei@winthrop.edu

Dille, John E.; Winthrop College Biology Dept; Rock Hill SC 29733; 803-323-2111; 803-323-3448 (fax); dillej@winthrop.edu

Dilworth, Machi; Plant Sci Initiatives; National Science Foundation; 4201 Wilson Blvd.; Arlington VA 22230; 703-306-1439; mdilwort@nsf.gov

Dilworth, Machi; Plant Sci Initiatives; National Science Foundation; 4201 Wilson Blvd.; Arlington VA 22230; 703-306-1439; mdilwort@nsf.gov Ding, Qun-Xing; 1435, S. Limeston St., Apt 285; Lexington KY 40503 Dinges, Jason; 2182 Molec Biol Bldg; lowa State Univ; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); jdinges@iastate.edu Dodd, J. L.; Professional Seed Research, Inc; 7 South 437 Dugan Road; Sugar Grove IL 60554; 630-466-1060; 630-466-1068 (fax) Doebley, John F.; Genetics Department; University of Wisconsin; Madison WI 53706; 608-265-5803/5804; 608-262-2976 (fax); jdoebley@facstaff.wisc.edu Dogra, Anjali; 105 Tucker Hall; University of Missouri; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); c651666@showme.missouri.edu Dolfini, Silvana Faccio; Dipartimento di Genetica; University of Milano; Via Celoria 26; 20133 Milano; ITALY; 39 2 266051; 39 2 2664551 (fax) Dolgykh, Yulia; Inst of Plant Physiology; ul. Botanicheskaya, 35; Moscow 127276; RUSSIA; 7-095-9039392; 7-095-4821685 (fax); ifr@ippras.ru Dombrink-Kurtzman, Mary Ann; Natl. Ctr. for Agric. Utilization Research; USDA, ARS; 1815 N. University St.; Peoria IL 61604-3902; (309)681-6254; (309)681-6686 (fax); dombrink@mail.ncaur.usda.gov Dooner, Hugo K.; The Waksman Institute; Rutgers University; P.O. Box 0759; Piscataway NJ 08855; 732-445-4684; 732-445-5735 (fax); dooner@waksman.rutgers.edu Doring, Hans-Peter; Deutz-Kalker-St. 136; 50679 Koln; GERMANY Dorweiler, Jane; Dept Plant Sciences; 303 Forbes Hall; University of Arizona; Tucson AZ 85721; 520-621-8964; 520-621-7186 (fax); jdorweil@ag.arizona.edu Dowl, Pat; USDA-ARS; 1815 N. University S1.; Peoria IL 61604; 309-681-6242; 309-681-6868 (fax); dowdpf@mail.ncaur.usda.gov Doyle, Greg; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2674 Dresselhaus, Thomas; Univ Hamburg, AMP II; Ohnhorststr 18; Hamburg D-22609; GERMANY; 49 40 82282 360; 49 40 82282 229 (fax); dresselh@botanik.uni-hamburg.de

hamburg.de

Drummond, Bruce; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004 Dudley, John W.; Crop Sciences, S112 Turner Hall; University of Illinois; 1102 S Goodwin Ave; Urbana IL 61801; 217-333-9640; 217-333-9817 (fax); jdudley@uiuc.edu Duncan, David; Monsanto Agricultural Group GG4H; 700 Chesterfield Parkway N.; Chesterfield MO 63198; 314-537-6923; 314-537-6567 (fax); drdunc1@ccmail.monsanto.com

Durkovicova, Viera; Prachaticka 43; SK-96001 Zvolen; SLOVAK REPUBLIC Duvick, Donald N.; P.O. Box 446; 6837 N.W. Beaver Drive; Johnston IA 50131; 515-278-0861; 515-253-2125 (fax); dnd307@AOL.com Duvick, Jonathan P.; Pioneer Hi-Bred Internati; Dept of Biotechnology Res; 7300 N.W. 62nd Ave; Johnston IA 50131-1004; 515-270-3176; 515-253-2147 (fax); duvicki@phibred.com

duvickj@phibred.com Duvick, Genhibred.com Duvick, Susan; 1501 Agronomy; Iowa State University; Ames IA 50011; 515-294-5545 Earle, Elizabeth D.; Dept Plant Breed & Biom; Cornell University; 252 Emerson Hall; Ithaca NY 14853-1902; 607-255-3102; 607-255-6683 (fax); ede3@cornell.edu Eathington, Samuel R.; 910 Gaskill; Ames IA 50014; 515-956-3073; 515-232-7170 (fax); Samuel.R.Eathington@Monsanto.com Eaton, Dana; Asgrow Seed Co; 32545 Galena Sassafras Rd; Galena MD 21635; 410-827-9240; 410-827-9763 (fax) Edgerton, Mike; Dekalb Plant Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355-1958; 860-572-5269; 860-572-5282 (fax); medgerto@dekalb.com Edwards, Keith; Crop Genetics; IACR-Long Ashton Res Stn; Univ Bristol, Long Ashton; Bristol BS18 9AF; UNITED KINGDOM; 44 1275 549431; 44 1275 394281 (fax); KEITH.EDWARDS@BBSRC.AC.UK Edwards, Marlin: Northrup King Co; 317 330th Street; Stanton MN 55018-4308; 507-663-7623; 507-665-7519 (fax)

Edwards, Marlin; Northrup King Co.; 317 330th Street; Stanton MN 55018-4308; 507-663-7623; 507-645-7519 (fax) Efremov, Alexander; Max-Planck-Institute; Carl-von-Linne-Weg 10; D-50829 Koln (Vogelsang); GERMANY Eggleston, Bill; Department of Biology; Virginia Commonwealth University; 816 Park Ave; Richmond VA 23284; 804-828-1562; 804-828-0503 (fax); Weggles@saturn.vcu.edu

Egli, Margaret A.; Dept Agron & Plant Genetics; Univ of Minnesota, 411 Borlaug Hall; 1991 Buford Circle; St. Paul MN 55108; (612)625-5215/5793; (612)625-1268 (fax); peggy@biosci.cbs.umn.edu

Egli, Margaret A.: Dept Agron & Plant Genetics; Univ of Minnesota, 411 Borlaug Hall; 1991 Buford Circle; St. Paul MN 55108; (612)625-5215/5793; (612)625-1268 (fax); pegg/@biosci.cbs.umr.edu Eichholtz, David A.; Monsanto, BB40; 700 Chesterfield Village Pkwy; St. Louis MO 63196; 314-537-6227; 314-537-6047 (fax); DAEICH@CCMAIL.MONSANTO.COM Eisses, John; Dept. of Biological Sciences; University of Idaho; Moscow ID 8384-30521; 208-885-6370; 208-885-7005 (fax); eiss4477@novell.uidaho.edu Eising, Evan, Pioneer Hi-Bred Intl Inc; Kekana Research Sta; PO Box 596 (Kekaha, Kauai HI 96752-0596 England, Dan; Curtis Hall; Univ of Missouri; Columbia MO 65211-7020; 573-882-7818; 573-8847-580 (fax); eisen@ut-du Evan, Mattiwev: Laboratory of Genetics; 445 Henry Matli. University of Visconsin; Modison WI 53706; 608-262-2976 (fax); evalans@duke.edu Evans, Mattiwev: Laboratory of Genetics; 445 Henry Matli. University of Wisconsin; 1575 Linden Dr; Madison WI 53705; 608-262-2976 (fax); mewans@lacstaff.wisc.edu Evans, Mattiwev: Laboratory of Genetics; 445 Henry Matli. University of Wisconsin; 1575 Linden Dr; Madison WI 53705; 608-262-2762 (fax); fabel@macc.wisc.edu Farish, Guy; Biology Dept; Adams State College; Alamosa CO 81102; 719-567-7696; 719-587-7242 (fax); gelarish@edams.edu Farish, Guy; Biology Dept; Johans Tato Colces Genetics, 2141-8800; 910-547-1038; 910-547-7242 (fax); Gelaris.edu-7473 (fax); fabel@macc.wisc.edu Farish, Guy; Biology Dept; Johans Tato Colces Genetics, 2145-857, 114-8453-5471-734, 635-7477 (fax); Christiane: Lauron@genetics.utah.edu Fedrorfi, Misaize Research Institute Shandong; Academy of Agricultural Sciences; 117, 814-685-7477-6420-32745 (fax); FEIX@biologie.UNI-FREIBURG.DE Ferg, Jas Shi, Maize Research Institute Shandong; Academy of Agricultural Sciences; 217-875-2826; 217-875-9437 (fax) Ferf, Robert, Finder Institute Shandong; Academy of Agricultural Sciences; 117, 814-865-7477-6120-32745 (fax); FEIX@biologie.UNI-FREIBURG.DE Ferg, Jas Shi, Maize Research Institute Shandong; Academy of Agricultural Scienc

freeling@nature.berkeley.edu

Frei, Mark; LG Seeds; Eggenkamp 1; Greven 48268; GERMANY; 49-2571-55939; 49-2571-53808 (fax); Iggrev@aol.com Frey, Monika; Lehrstuhl fur Gentechnik Hoherer Pflanzen; TUM; Lichtenbergstrabe 4; 85747 Garching; GERMANY; 49-89-2891-3532; 49-89-2891-2892 (fax); frey@gen.chemie.tu-muenchen.de

Freymark, Peter J.; 16 Cameron Road; P.O. Borrowdale; Harare; ZIMBABWE; 011-263-4-726061; 011-263-4-726061 (fax); FREYMARKP@PHIBRED.COM Friedberg, Jeremy; 24 Silvergrove Rd; North York, Ont M2L 2N6; CANADA; 416-449-2098; jfriedb@plant.uoguelph.ca

Friedman, Robert B.; Cerestar USA; 1100 Indianapolis Blvd; Hammond IN 46320-1094; 219-659-2000 ext 390; 219-473-6607 (fax) Friedrich, James W.; Maize Genetic Resources, Inc; 10570 Hwy. 50 North; Angier NC 27501; 919-894-5594; 919-894-5660 (fax) Frova, Carla; Dept of Genetics & Microbiology; University of Milano; Via Celoria 26; 20133 Milano; ITALY; 39 2 26605244; 39 2 2664551 (fax); carla.frova@unimi.it Fu, Xi-Qin; Hunan Academy of Agricultural Sciences; Hybrid Rice Research Center; Mapoling, Dong Jiao, Changsha; Hunan 410125; CHINA; 86-731-469-1443; 86-731-

469-1877 (fax) Fuerstenberg, Susan; 1206 Orkney Drive; Ann Arbor MI 48103; 313-647-5718; sifuerst@umich.edu Gabay-Laughnan, Susan; Plant Biology/265 Morrill Hall; University of Illinois; 505 S. Goodwin Avenue; Urbana IL 61801; 217-333-2919; 217-244-7246 (fax); gabaylau@life.uiuc.edu

Gaillard, Antoine; Maisadour Semences; Unite Biotechnologie; BP 27; 40001 Mont-de-Marsan; FRANCE; 58 05 84 54; 58 05 84 87 (fax); gaillard@maisadour.com Gale, Michael; John Innes Centre; Norwich Research Park; Colney; Norwich NR4 7UH; UNITED KINGDOM; 44 1603 450 599; 44 1603 450 024 (fax); mike.gale@bbsrc.ac.uk

Galinat, Walton C.; Eastern Agric. Center, U. Mass.; 240 Beaver Street; Waltham MA 02154-8096; 617-891-0650; 617-899-6054 (fax) Galile, Daniel; Dept. of Biochemistry; University of California; Riverside CA 92521; (909)787-7298; (909)787-3590 (fax); DRGALLIE@UCRAC1.UCR.EDU Gao, Min-Wei; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA Garcia-Olmedo, F.; Lab Biochemistry and Molecular Biology; Dept. Biotechnology; E T S Ingenieros Agronomos; 28040-Madrid; SPAIN; 34-1-3365707; 34-1-3365757 (fax)

Gardiner, Jack; 214 Curtis Hall; University of Missouri; Columbia MO 65211-7202; 573-884-3134; 573-884-7850 (fax); GardinerJ@Missouri.edu Gardiner, Michele; Rogers NK Seed Co; 6338 Highway 20-26; Nampa ID 83687; (208)466-0319; (208)467-4559 (fax); michele.gardiner@seeds.novartis.com Gardner, Candice; USDA-ARS Research Leader; NCR Plant Introduction Station; G214 Agronomy Hall; Iowa State University; Ames IA 50011-1170; 515-294-7967; 515-

Garoner, Canoler, USDA ARS Research Leader, WCh Plant Introduction Station, G214 Agonomy Hain, ford Glad Cintering, Hain and Controlling, Haine and Controlling, Garonal, Carl W.; Pioneer Hi-Bred Intil; Department of Biotechnology Research; 7300 N. W. 62nd Ave-P.O. Box 1004; Johnston IA 50131-1004; (515)253-2251; (515)270-3367 (fax); GARNAATC@PHIBRED.COM Garwood, D. L.; Garwood Seed Company; 1929 N. 2050 East Rd.; Stonington IL 62567-5306; 217-325-3715; 217-325-3578 (fax) Gaut, Brandon; 321 Steinhaus Hall; Dept Eco & Evol; UC Irvine; Irvine CA 92697-2525; 949-824-2564; 949-824-2181 (fax); bgaut@uci.edu Gavazzi, Giuseppe; Universita de Milano; Dip Fisiol Pianta Coltivate Chim Agrar; Via Celoria 2; 20133 Milano; ITALY; 02-26607221; 02-2663057 (fax);

gavazzi@imiucca.csi.unimi.it

Geadelmann, Jon L.; Holden's Foundation Seeds, Inc; 2440 Highway 19 Blvd; Stanton MN 55018-7220; 507-263-3476; 507-263-4839 (fax); jon@holdens.com Gebauer, Juan E.; Corn Breeding; Casilla 190; Buin; CHILE; 011(56-2)821-1552; 011(56-2)821-3564 (fax)

Geiger, Hartwig H.; Univ Hohenheim; 350 Inst Pflanzenzucht; Seed Sci and Pop Genetics; D-70593 Stuttgart; GERMANY; 49-711-459-2644; 49-711-459-2343 (fax); geigerhh@uni-hohenheim.de

Gengenbach, Burle G.; Agron & Plant Genetics; Univ of Minnesota; 1991 Upper Buford Cir.; St Paul MN 55108; 612-625-6282; 612-625-1268 (fax); burle@biosci.cbs.umn.edu

Gierl, Alfons; Lehrstuhl fur Genetik; Technische Universitat Munchen; Lichtenbergstrasse 4; 85747 Garching; GERMANY; 49-89-289-12890; 49-89-289-12892 (fax); gierl@bio.tum.de

Gierl, Alfons; Lehrstuhl für Genetik; Technische Universitat Munchen; Lichtenbergstrasse 4; 85747 Garching; GERMANY; 49-89-289-12890; 49-89-289-12892 (fax); gein@bio.tum.de
 Gillam, Jacob; Pioneer Hi-Bred Internat Inc; Crop Protection; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004
 Gillies, Christopher; Macleay Bldg A12; Univ of Sydney; Sydney NSW 2006; AUSTRALIA, e17-251-2688; 61-2-351-4571 (fax); cgillies@extro.ucc.su.oz.au
 Giorio, Giovanni; c/o Metapontum Agrobics; SS. Ionica Km 448.2; 1-75010 Metaponto (MT); ITALY; 99-835-740276; 39-835-745306 (ftax)
 Giard, Liaz, Plant Biology Dept; 111 Koshland Hall; UC Berkeley: Berkeley CA 94720-3102
 Glover, David V.; Dept of Agronomy; Purdue University; W. Lalayette IN 47907; 765-494-6607; 765-494-6608 (fax); DGLOVER@dept.agry.purdue.edu
 Godshalk, E. Brent; Dekalo Genetics Corp.; 423 S. Colebrook Rd., Manheim PA 17545-9144; 815-738-9372
 Golf, Steve; CIBA-GEIGY Biotechnology; 3054 Cornwallis Road; Research Triangle Park NC 27709
 Goldman, Nivin; Department of Horiculture; Univ. of Wisconsin; 1752 Linden Drive; Madison WI 53706; (608)262-7781; (608)262-4743 (fax)
 Goldman, Stephen; Dept of Biology; Inversity of Toledo; Toledo OH 43606; 419-530-1540; 419-530-7377 (fax); stephen.goldman@utoledo.edu
 Golduso, Hang, Canade Lab; Dept of Molec & Cell Biology; Box 341 LSA; Univ of California; 190 000 SI Petersburg; RUSSIA
 Gordon, P. N.; CT Forest & Park Assoc.; 16 Meriden Rd; Rockfall CT 06481-2961; (203)46-2372; 203-347-7463 (fax)
 Gordon, P. N.; CT Forest & Park Assoc.; 16 Meriden Rd; Rockfall CT 06481-2961; (203)46-2372; 203-347-7463 (fax);
 Gordon, P. N.; CT Forest & Park Assoc.; 16 Meriden Rd; Rockfall CT 06481-2961; (203)46-2372; 203-347-7463 (fax);
 Gordon, P. M.; CT Forest & Park Assoc.; 16 Meriden Rd; Rockfall CT 06481-2961; (203)46-2372; 203-347-7463 (fax);
 Gordon

Gu, Ming-Hong; Jiangsu Agricultural College; Dept. of Agronomy; Yangzhou; Jiangsu 225001; CHINA Gu, Mingguang; Institute of Genetics; Chinese Academy of Sciences; Beijing; CHINA Guiltinan, Mark; Penn State Biotechnology Institute; 306 Wartik Lab; Dept of Horticulture; Univ. Park PA 16802-5807; 814-863-7958; 814-863-6139 (fax);

mjg9@psu.edu

mig9@psu.edu Guimaraes, Marco A; Caixa Postal 9; Via Dionisio Bortoloti Km 0.5; Santa Cruz das Palmeiras; SP 13650-970; BRAZIL; 55196-72-1917; 55196-72-2424 (fax) Guo, Baozhu; USDA/ARS/IBPMRL; PO Box 748; Tifton GA 31793-0748; 912-387-2326; 912-387-2321 (fax); bguo@tifton.cpes.peachnet.edu Guo, Jun-Yuan; Academia Sinica; South China Institute of Botany; Guangzhou 510650; CHINA Guo, Mei; Pioneer Hi-Bred Intl, Inc; 7250 NW 62nd Ave; PO Box 552; Johnston IA 50131-552; 515-253-2146; 515-334-4788 (fax); guom@phibred.com Gupta, Manju; Mycogen; 9330 Zionsville Rd; Building 306/C-1; Indianapolis IN 46268-1054; 317-337-5980; 317-337-5989 (fax); mgupta@dowelanco.com Haag, Wayne L.; Sasakawa Global 2000; C. P. 4247; Maputo; MOZAMBIQUE; 258-1-490004; 258-1-491417 (fax) Hake, Sarah; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5607; 510-559-5678 (fax); maizesh@nature.berkeley.edu Hall, Lisa Naomi; Oxford Univ; Dept Plant Sci; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; 865-275030; 865-275147 (fax) Hallauer, Arnel R.; Agronomy Building; 1505 Agronomy Hall; Iowa State University; Ames IA 50011-1010; 515-294-3163 (fax) Hamilton, Rl; 3199 Klondike Road; North Gower; Ontario K0A2T0; CANADA; 613-489-3166; 613-489-3166 (fax); rih@cyberus.ca Han, Changdeok; Gyeongsang National University; Gazwa Dong; Chinju 660-701; KOREA; 082-591-751-6029; 82-591-759-9363 (fax); cdhan@nongae.gsnu.ac.kr Hannah, Curtis; Veg Crops Dept; Univ of Florida, IFAS; 1143 Fifield Hall, P.O. Box 110690; Gainesville FL 32611-0690; 352-392-1928x315; 352-392-5653 (fax); Hannah@GNV.IFAS.UFL.EDU Hansel, W. C.; Hansel Cons & Mgmt; Box 283; Carrollton MO 64633; 816-542-1616

Hannah@GNV.IFAS.UFL.EDU Hansel, W. C.; Hansel Cons & Mgmt; Box 283; Carrollton MO 64633; 816-542-1616 Hansen, Joel; 2254 Molecular Biology Bldg.; Iowa State University; Ames IA 50011; 515-294-0347; 515-294-0453 (fax); jdhansen@iastate.edu Hansen, Leon A.; Novartis Seeds, Inc.; 6338 Highway 20-26; Nampa ID 83687; 208-465-8554; 208-467-4559 (fax) Hanson, Maureen R.; Section Genetics/Develop,; Cornell Univ.; Biotech Bldg: Ithaca NY 14853; 607-254-4833; 607-255-2428 (fax) Hantke, Sabine; Pioneer Hi-Bred Intl, Inc; 7300 NW 62nd Ave; P.O. Box 1004; Johnston IA 50131; 515-253-2493; 515-270-3367 (fax); hantkess@phibred.com Hardeman, Kristine; Dekalb Plant Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355; 860-572-5282 (fax); Ibrooks@dekalb.com Harper, Lisa; Dept Molec & Cell Biol; 345 LSA; University of CA; Berkeley CA 94720; 510-643-8277; 510-643-6791 (fax); ligule@nature.berkeley.edu Harris, John W.; Dept of Biology; Tennessee Tech Univ; Cookeville TN 38505; 615-372-3143; 615-528-4097 (fax) Harris, Linda J.; Eastern Cereal & Oilseed Res Centre; Agriculture & Agri-food Canada; Bldg. #21, Central Exp. Farm; Ottawa, Ontario K1A 0C6; CANADA; (613)759-1314: (613)759-6566 (fax): harrisil@em.agr.ca 1314; (613)759-6566 (fax); harrislj@em.agr.ca Hartman, Carl; 155 South St. Rd. 2; Valparaiso IN 46383; 219-462-1927

Havukkala, Ilkka; Genesis R & D Corp. Ltd.; P.O. Box 50; Auckland; NEW ZEALAND; 64-9-373-5600; 64-9-373-5601 (fax); i.havukkala@genesis.co.nz

Hawk, James A.; Dept Plant & Soil Sciences; University of Delaware; Newark DE 19717-1303; 302-831-1379; 302-831-3651 (fax); jhawk@strauss.udel.edu

He, Zuhua; Zhejiang Agricultural University; Biotechnology Institute; Hangzhou; Zhejiang 310029; CHINA Heinlein, Manfred; The Scripps Research Institute; Dept. of Plant Cell Biology, MRC 7; 10666 North Torrey Pines Rd; La Jolla CA 92037; 619-554-2854; 619-554-6330

(fax)

Helentiaris, Tim; Pioneer Hi-Bred Int., Inc.; Agronomic Traits/TTD; 7300 N.W. 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3691; 515-254-2619 (fax); helentjartg@phibred.com

Heredia-Díaz, Oscar; Monsanto; 700 Chesterfield Pkway North GG6A; St. Louis MO 63198; 314-537-6902; 314-537-6950 (fax); oohere@monsanto.com Heslop-Harrison, J. S.; Karyobiology Group; JI Centre for Plant Science Research; Colney Lane; Norwich NR4 7UH; ENGLAND; 44-1603-452571; 44-1603-456844 (fax); HHARRISON@bbsrc.AC.UK

Hetz, Winfried; Institue of Biology; University of Freiburg; Schlanzlestr, 1; 79104 Freiburg; GERMANY Heun, Manfred; Population Genetics; Dept Chem & Biotechnol; PO Box 5040, Agric Univ Norway; N-1432 AAs - NLH; NORWAY; 47-64947679; 47-64947691 (fax); manfred.heun@ikb.nlh.no

Hiatt, Evelyn N.; Dept of Genetics; Life Sciences Bldg; Univ Georgia; Athens GA 30602; 706-542-1010; 706-542-3910 (fax); hiatt@dogwood.botany.uga.edu Hile, Glenn C.; Northrup King Co; 7113 Alt 49 East; P.O. Box 249; Arcanum OH 45304; 513-692-5164; 513-692-8256 (fax) Hill, Martha; CIBA-GEIGY; PO Box 12257; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8580; 919-541-8585 (fax); HILLM@ABRU.CG.COM Ho, David; Department of Biology; Washington University; St. Louis MO 63130; 314-935-4632; 314-935-4432 (fax); HO@WUSTLB.wustl.edu Hodges, Tom; Botany & Plant Pathology; Agricultural research Building; Purdue University; W. Lafayette IN 47907; 765-494-4657; 765-494-5896 (fax);

Hodges, Tom; Botany & Plant Pathology; Agricultural research Building; Purdue University; W. Latayette IN 4/90/; 765-494-465/; 765-494-5896 hodges@btny.purdue.edu
Hoegemeyer, Thomas C.; Hoegemeyer Hybrids Inc; 1755 Hoegemeyer Rd; Hooper NE 68031; 402-654-3399; 402-654-3342 (fax)
Hoekenga, Owen; Boyce Thompson Inst Plant Res; Tower Rd; Ithaca NY 14853-1801; 607-254-1310; 607-254-1242 (fax); oah1@cornell.edu
Hoisington, David; CIMMYT; Lisboa 27, Aptdo. Postal 6-641; 06600 Mexico, D. F.; MEXICO; 525-726-7575; 525-726-7558 (fax); DHOISINGTON@CIMMYT.MX
Hole, David; Plant Soils & Biometeorology Dept.; Utah State Univ.; Logan UT 84322-4820; 435-750-2335; 435-750-3376 (fax); dhole@mendel.usu.edu
Holland, Greg; Asgrow Seed Co; Box 460 Hwy 20 W; Parkersburg IA 50665; 319-347-6633; 319-347-2720 (fax)
Holley, Randall; 340 Southside Dr.; Henderson KY 42420
Hollick, Jay: Institute of Molecular Biology: University of Oregon; Europea OB 97403-1229; 541-346-5123; hollick@darkwing upregon edu

Hollick, Jay; Institute of Molecular Biology; University of Oregon; Eugene OR 97403-1229; 541-346-5123; hollick@darkwing.uoregon.edu Hong, Guo-Fan; National Center for Gene Research; Chinese Academy of Science; 500 Cao Bao Road; Shanghai 200233; CHINA; 86-21-482-2885; 86-21-482-5775 (fax) Hong, Meng-Min; Chinese Academy of Sciences; Shanghai Inst Plant Physiol; 300 Fenglin Road; Shanghai 20032; CHINA; 86-21-64042090-4429; 86-21-64042385 (fax); hongmm@iris.sipp.ac.cn

Houchins, Kate; 302 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2033; 573-884-7850 (fax); Kate@teosinte.agron.missouri.edu

Howard, John; Prodigene; 1500 Research Pkwy Suite 220; College Station TX 77845; 409-862-8537; 409-862-8538 (fax) Hsia, An-Ping; B420 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); hsia@iastate.edu Hu, Gongshe; Dept Plant & Microbial Biol; Plant Gene Expression Ctr; 800 Buchanan St; Albany CA 94710; 510-559-5919; 510-559-5678 (fax); gongshe@uclink4.berkeley.edu

gongshe@uclink4.berkeley.edu Hu, Jianping; Dept of Botany; University of Georgia; Athens GA 30602; 706-542-1857; 706-542-1805 (fax) Huang, Anthony; Dept. Bot. & Plant Sci.; Univ. of California; Riverside CA 92521-0124; 909-787-4783; 909-787-4437 (fax); ahuang@ucrac1.ucr.edu Huang, Bing-Quan; Biology Dept; Univ of North Dakota; Grand Forks ND 58202; 701-777-4479; 701-772-5041 (fax) Huang, Danian; China National Rice Research Institute; Hangzhou; Zhejiang 310006; CHINA Huang, Wei-Da; Fudan University; Dept. of Biochem.; Handan Road 220; Shanghai 200433; CHINA Huang, Yih-Ching; Department of Agronomy; National Taiwan University; Taipei; TAIWAN; (02)363-0231 ext. 2727; (02)362-0879 (fax) Hubbard, Lauren; USDA-ARS-PGEC; 800 Buchanan St; Albany CA 94710; 510-559-5922; 510-559-5648 (fax); LHUBBARD@Nature.Berkeley.EDU Huffman, Gary A.; Pioneer Hi-Bred International; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3502; 515-270-3367 (fax); HUFFMANG@PHIBRED.COM

Hulbert, Scot; Kansas State University; Dept. of Plant Pathology; Throckmorton Hall; Manhattan KS 66506-5502; 913-532-1392; 913-532-5692 (fax); shulbert@plantpath.ksu.edu

shulbert@plantpath.ksu.edu Hunsperger, John P.; P.O. Box 2217; Gilroy CA 95021-2217; (408)848-1161; jhunsp@ix.netcom.com Hunter, Brenda; Dept Plant Sci; Forbes Hall, Room 303; Univ of Arizona; Tucson AZ 85721 Hunter, Clifford; Hybritech; 5912 N. Meridian; Wichita KS 67204-1699 Hussey, Patrick J.; University of London; Royal Holloway New College; Dept. Biochem., Egham Hill; Egham, Surrey TW20 OEX; UNITED KINGDOM lida, Shigeru; Div Gene Expr & Regulation I; Nat Inst for Basic Biology; Okazaki 444; JAPAN; 0564-55-7680; 0564-55-7685 (fax); shigiida@nibb.ac.jp Im, Kyung Hoan; Dept Plant Path; Univ of Florida; Gainesville FL 32611 Image, R. J. DaKelk Carado Jaco R. R. P. 3: Clanworth Oct NOL 110; COMDDA

Innes, R. L.; DeKalb Canada Inc.; R.R. 2; Glanworth, Ont. NOL 1L0; CANADA

Inoue, Yasuaki; National Grassland Res Inst; 768 Nishinasuno; Tochigi 329-27; JAPAN; 0287-36-0111 Irish, Erin; Department of Biological Sciences; 312 Chemistry Bldg; University of Iowa; Iowa City IA 52242; 319-335-2582; 319-335-3620 (fax); erin-irish@uiowa.edu Isaac, Peter; Agrogene S.A.; 620, rue Blaise Pascal; Z.I.-Immeuble Alligator; 77555 Moissy Cramayel; FRANCE; 33-1-64 13 31 80; 33-1-64 13 31 81 (fax);

petel @agrogene.com Ishige, Teruo; Biol Resources Div; JIRCAS; 1-2 Ohwashi; Tsukuba 305-8686; JAPAN; 81-298-38-6305; 81-298-38-6650 (fax) Ishikawa, Ryuji; Faculty of Agriculture; Hirosaki Univ; Hirosaki Aomori 036; JAPAN; 011-81-172-39-3778; 011-81-172-39-3750 (fax); ishikawa@cc.hirosaki-u.ac.jp Islam-Faridi, M. Nurul; Dept Soil and Crop Sci; Texas A&M Univ; College Station TX 77843-2474

Jackson, David; Cold Spring Harbor Lab; 1 Bungtown Rd; P.O. Box 100; Cold Spring Harbor NY 11724-2212; 516-367-8467; 516-367-8369 (fax); jacksond@cshl.org Jackson, Janet Day; Maize Coop Stock Center/AW-101 Turner; University of Illinois; 1102 S. Goodwin Ave; Urbana IL 61801; 217-333-6331; 217-333-6064 (fax); jday@uiuc.edu

James, Martha G.; Dept. of Biochemistry & Biophysics; Molecular Biology Building, Room 2152; Iowa State University; Ames IA 50011; 515-294-3818; 515-294-0453 (fax); mgjame@iastate.edu Jampatong, Chaba; Natl Corn & Sorghum Res Ctr; Kasetsart Univ; Klangdong, Pakchong; Nakhonratchasima, 30320; THAILAND; 66-44-361771-4; 66-44-361108 (fax);

raisuwan@korat.loxinfo.co.th

Jampatong, Sansern; Natl Corn & Sorghum Res Ctr; Kasetsart Univ; Klangdong, Pakchong; Nakhonratchasima,30320; THAILAND; 66-44-361771-4; 66-44-361108 (fax); raisuwan@korat.loxinfo.co.th

(1ax); raisuwan@korat.loxinto.co.th Jankovsky, Julia; Biology Dept c/o Tim Nelson; PO Box 208104; Yale University; New Haven CT 06520-8104; 203-432-3862; julia.Paxson@Yale.edu Jeffries-Griffor, Joanne; DeKalb Genetics; 62 Maritime Rd; Mystic CT 06355 Jegla, Dorothy; Dept Biol Sci; 316 CB; University of Iowa; Iowa City IA 52242 Jenkins, Bethany; Institute of Molecular Biology; University of Oregon; Eugene OR 97403 Jesaitis, Lynn; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-8058; 510-642-4995 (fax); Ijesaiti@nature.berkeley.edu Jewell, David C.; CIMMYT Maize Research Station; P.O. Box MP 163; Mount Pleasant; Harare; ZIMBABWE; (263)(4)301807; (263)(4)301327 (fax); D.Jewell@CGNET.com

Jobling, Steve; Unilever Research; Colworth House; Sharnbrook; Bedford MK44 1LQ; UNITED KINGDOM; 44 1234 222575; 44 1234 222552 (fax); Steve Jobling@unilever.com Johal, Guri; Pioneer Hi-Bred Internatl; Dept Biotechnol Res; PO Box 552; Johnston IA 50131-0552; 515-253-2154; 515-253-2147 (fax); johalgu@phibred.com Johns, Mitrick A.; Dept Biological Sciences; Northern Illinois University; DeKalb IL 60115; 815-753-7836; 815-753-0461 (fax); majohns@niu.edu Johnson, Elizabeth; CIBA-GEIGY Corporation; P.O. Box 1830; Kaunakakai HI 96748; 808-567-6146; 808-567-6753 (fax) Johnson, Elimer C.; 1525 Vine St.; Belmont CA 94002; 650-593-1525

Johnson, MW; Dept of Agronomy; Pennsylvania State Univ; University Park PA 16802; 814-865-0324; 825-863-7043 (fax) Johnson, Scott; Mycogen Plant Sciences; 301 Campus Dr; P.O. Box 280; Huxley IA 50124; 515-597-3284; 515-597-2875 (fax)

Johri, M. M.; Molecular Biology Unit; Tata Inst Fundamental Res; Homi Bhabha Road; Mumbai 400 005; INDIA; 215-2971; 091-22-215-2110 (fax); MMJOHRI@tifrvax.tifr.res.in

Jondle, Doug; Cargill Hybrid Seeds; 1502 N Gault; St. Peter MN 56082; 507-931-2940; 507-931-9691 (fax) Jones, John Edward; 8429 Meadow Green Way; Gaithersburg MD 20877 Jones, John K.; Dept Agric Bot; University of Reading; Whiteknights; Reading RG6 2AS; UNITED KINGDOM; 44-1734-875123 EXT 7950; 44-1734-750630 (fax) Jones, Jonathan; Sainsbury Laboratory; John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-452571; 250024 (fax); JONESJ@bbsrc.AC.UK

Jones, Mark; 031 Selby Hall; 1680 Madison Ave; Wooster OH 44691; 330-263-3838x2837; 330-263-3841 (fax); jones.390@osu.edu Jones, Todd; E. I. DuPont de Nemours & Co; Stine Research Center 614/106; Newark DE 19714; 302-283-2404; 302-283-2449 (fax); todd.jones@usa.dupont.com Julstrom, Paul; c/o CIMMYT; Lisboa 27, Apdo. Postal 6-641; 06600 Mexico, D.F.; MEXICO; 52 5 726 9091; 52 5 726 7558 (fax) Jun, Wei; Box 8118; Beijing 100081; CHINA Junk L. P. Dert Mark, D. P. Starter, S. C. Historich, ed Illinein; 207 ERM ; Likbone II. 61801; 217 232 1056; 217 232 4777 (both i binik@uiue.edu

Junk, J. A.; Dept. Nat. Res. Environ. Sci.; University of Illinois; 307 ERML; Urbana IL 61801; 217-333-1966; 217-333-4777 (fax); j-juvik@uiuc.edu Kaeppler, Shawn; Dept of Agronomy; University of Wisconsin; 1575 Linden Drive; Madison WI 53706; 608-262-9571; 608-262-5217 (fax); smkaeppl@facstaff.wisc.edu Kahler, Alex; Biogenetic Services, Inc; 2308 6th Street E.; P.O. Box 710; Brookings SD 57006; 605-697-8500; 605-697-8507 (fax); biogene@brookings.net Kaleikau, Ed; NRI Plant Genome Program; Stop 2241; 1400 Independence Avenue SW; Washington DC 20250-2241; 202-401-1931; 202-401-6488 (fax); EKALEIKAU@REEUSDA.GOV Kalia, V.; Regional Research Station; Dhaulakuan-173001; Distt Sirmur (H. P.); INDIA

Kang, Chun-Lin; Hunan Agricultural College; Dong Jiao; Changsa; Hunan 410128; CHINA Kang, Manjit; Department of Agronomy; Louisiana State University; Baton Rouge LA 70803-2110; 504-388-2110; 504-388-1403 (fax); mkang@agctr.lsu.edu Kannenberg, L. W.; Dept of Crop Science; University of Guelph; Guelph, Ontario N1G 2W1; CANADA; 519-824-4120 EXT 2506; 519-763-8933 (fax); LKANNENB@CROP.UOGUELPH.CA

Karpoff, Arnold; Dept of Biology; Univ of Louisville; Louisville KY 40292; 502-852-5934; 502-852-0725 (fax); AJKARP01@homer.Louisville.edu Kasha, Ken; Dept of Crop Science; Univ of Guelph; Guelph, Ontario N1G 2W1; CANADA; 519-824-4120EXT 2507; 519-763-8933 (fax) Kass, Lee; L. H. Bailey Hortorium; 462 Mann Library; Cornell Univ; Ithaca NY 14853; 607-255-2131; 607-255-7979 (fax); LBKBHWON@aol.com Kaszas, Etienne; Univ California-Berkeley; 345 LSA; Berkeley CA 94533; 510-643-8277; 510-643-6197 (fax); ekaszas@lsa.berkeley.edu Kato, Akio; Univ Missouri; 117 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); kato@mail.biosci.missouri.edu

Kato Y., T. Angel; Colegio de Postgraduados; Inst Rec Genet Productividad; Km 35.5 Carr Mexico-Texcoco; 56230 Montecillo, Texcoco; MEXICO; 595 1 02 30; 595 1 02 30 (fax)

Keeling, Peter; ExSeeds Genetics L.L.C.; 1573 Food Sci Bidg; Iowa State Univ; Ames IA 50011-1061; 515-294-3259; 515-294-2644 (fax); pkeeling@iastate.edu Kellogg, Elizabeth A.; Dept of Biology; Univ of Missouri - St Louis; 8001 Natural Bridge Rd; St. Louis MO 63121; 314-516-6217; 314-516-6233 (fax); tkellogg@umsl.edu Kendall, Tim; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave., PO Box 1004; Johnston IA 50131-1004; 515-270-5952; 515-270-3367 (fax); KENDALLTL@PHIBRED.COM

Kendra, David F.; Northrup King Company; 317 330th Street; Stanton MN 55018; 507/663-7636; 507/645-7519 (fax); dkendra@MR.Net Kermicle, Jerry; 218 Genetics Dept; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-1253; 608-262-2976 (fax); kermicle@facstaff.wisc.edu Kerstetter, Randall; Plant Gene Expression Center, USDA; 800 Buchanan Street; Albany CA 94710; (510)559-5922; (510)559-5648 (fax); RAND@NATURE.BERKELEY.EDU

HAND@NATURE.BERKELEY.EDU Khairallah, Mireille; CIMMYT; Apdo. Postal 6-641; Mexico, D.F. 06600; MEXICO; 415-833-6655; 415-833-6656 (fax); mkhairallah@cimmyt.mx Khavkin, Emil E.; Inst Agric Biotech; 42 Timiryazevskaya ul.; Moscow, 127550; RUSSIA; (7-095)976-6544; (7-095)977-0947 (fax); emil@agrobio.msk.su Kiefer, Mike; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308 Kim, Insoon; Plant Biology Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102 Kim, Soon Kwon; Internat Agric Research Inst; College of Agriculture; Kyungpook National Univ; Taegu 702-701; SOUTH KOREA; kimsk@bh.kyungpook.ac.kr Kindiger, Bryan; USDA-ARS; Grazinglands Research Laboratory; 7207 West Cheyenne St; El Reno OK 73036; 405-262-5291; BKindiger@GRL.ARS.USDA.GOV Kiss, Charles; 18 Avenue Gallieni; 49130 Les Ponts de Ce; FRANCE; 33-2-41-44-97-97; 33-2-41-44-98-69 (fax) Kleese, Roger; 6700 80th Ave. N.; Brooklyn Park MN 55445; 612-566-3561; 515-254-2744 (fax) Klein, Anita S.: Denartment of Biochemistry: Snaulding Life Science Bidd: University of New Hampshire: Durbam NH 03824: 603-862-2455; 603-862-4013

Klein, Anita S.; Department of Biochemistry; Spaulding Life Science Bldg; University of New Hampshire; Durham NH 03824; 603-862-2455; 603-862-4013 (fax); anita.klein@unh.edu

Kloeckener, Barbara; Univ. of CA - Berkeley; Dept. of Plant Biology; 111 Koshland Hall; Berkeley CA 94720; 510-642-7085; 510-642-4995 (fax); bkg@nature.berkeley.edu

Knapp, Steve; Department of Crop & Soil Science; Oregon State University; Corvalis OR 97331-2902 Koch, Karen E.; 2147 Fifield Hall; Horticulture Dept, Plant Molec Cell Biol; University of Florida; Gainesville FL 32611; 352-392-4711 ext 309; 352-392-6479 (fax); kek@gnv.ifas.ufl.edu

kek@gnv.itas.ull.edu Koester, Ruth; Genetic Design, Inc.; 7017 Albert Pick Rd.; Greensboro NC 27409; 919-668-1432; 919-665-3966 (fax) Kohashi, Josue; Dept of Botany; Colegio de Postgrad; Chapingo, Edo de Mex; MEXICO; (595)4-22-00 ext.5294; (595)428-73 (fax) Koinuma, Keiichi; Hokkaido Natl Agric Exp Stn; Hitsujigaoka, Toyohira-ku; Sapporo; Hokkaido 0628555; JAPAN; koinuma@cryo.affrc.go.jp Konstantinov, Kosana; Maize Research Institute; S. Bajica 1; Belgrade 11080; YUGOSLAVIA; (381)11-617-434; (381)11-197-890 (fax) Konstantinov, Yuri; Siberian Inst Plant Phys Bioch; P.O. Box 1243; Irkutsk 664033; RUSSIA; 39-52-46-09-03; 39-52-51-07-54 (fax); yukon@sifibr.irk.ru Konstantinov, Yuri; Siberian Inst Plant Phys Bioch; P.O. Box 1243; Irkutsk 664033; RUSSIA; 39-52-46-09-03; 39-52-51-07-54 (fax); plantgene@sifibr.irk.ru Konstantinov, Yuri; Siberian Inst Plant Phys Bioch; P.O. Box 1243; Irkutsk 664033; RUSSIA; 39-52-46-09-03; 39-52-51-07-54 (fax); plantgene@sifibr.irk.ru Kowalewski, Shirley; Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-2674; 573-884-7850 (fax); shirley@teosinte.agron.missouri.edu Kowles, Richard V.; Biology Department - Box 10; 700 Terrace Heights; St. Mary's University of Minnesota; Winona MN 55987; 507-457-1554; 507-457-1633 (fax); dowles@Gremume.edu dkowles@smumn.edu

Krebbers, Enno; DuPont de Nemours & Co.; Agricultural Biotechnology; Experimental Station 402/2253; Wilmington DE 19880-0402; (302)695-8577; (302)695-7361

Krebbers, Enno; DuPont de Nemours & Co; Agricultural Biotechnology; Experimental Station 402/2253; Willington DE 19880-0402; (302)695-8577; (302)695-7361 (fax); enno.krebbers@usa.dupont.com
Krivov, Nikolai V.; Institute of Genetics; 20 Padurii St.; Kishinau 2002; MOLDOVA; 0422-52-20-68; 3732 556180 (fax); n.krivov@usa.net
Kriz, Al; DeKalb Plant Genetics/Monsanto; 62 Maritime Dr.; Mystic CT 06355-1958; 860-572-5217; 860-572-5280 (fax); akriz@dekalb.com
Krone, Todd; Asgrow Seed Co; 634 E. Lincoln Way; Ames IA 50010-6598; 515-232-6955; 515-232-6905 (fax)
Kross, Heike; Univ Missouri; 209 Curtis Hall; Columbia MO 65211-7020; 573-884-2343; 573-884-7850 (fax); heike@teosinte.agron.missouri.edu
Krueger, Roger W.; Monsanto; 800 N. Lindbergh Blvd. C2NA; St. Louis MO 63167; 314-694-3677; 314-694-5926 (fax); RWKRUE@ccmail.monsanto.com
Kuhn, William E; U.S. Corn Research Director; Pioneer Hi-Bred Internatil., Inc.; 7300 NW 62d Ave., PO Box 1004; Johnston IA 50131-1004; 515-270-3362; 515-253-2288 (fax); kuhnw@phibred.com
Kumar, M. J. Denattment of Genetics: Bajendra Agric, Liniy, Bihar; Pusa (Samastinur)-848125; INDIA

Kumar, M.; Department of Genetics; Rajendra Agric. Univ., Bihar; Pusa (Samastipur)-848125; INDIA Kumar, Sanjeet; Project Directorate Veg Res; Post Box # 5002; Varanasi-221005; INDIA; sanjeetk1@mailcity.com Kumar, Sushil; Central Inst Medicinal & Arom Plants; PO CIMAP; Lucknow 226015; INDIA; 91-0522-342683; 91-0522-342666 (fax); root@cimap.sirnetd.ernet.in Kunze, Reinhard; Institut fuer Botanik II; Universitaet zu Koeln; Gyrhofstr. 15; 51931 Koeln; GERMANY; Tel. +49-221-470-6596; Fax+49-221-470-5039;

Reinhard.Kunze@uni-koeln.de

Kuzmin, Eugene; Dept Biol Sci; Univ of Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); ekuzmin@biosci.mbp.missouri.edu

Labate, Joanne; Institute for Genomic Diversity; Biotechnology Bldg; Cornell Univ; Ames IA 50011; (607)254-4849; (607)255-6249 (fax); jl265@cornell.edu Laccetti, Lucille B.; DeKalb Plant Genetics; 62 Maritime Park; Mystic CT 06355; 860-572-5247; 860-572-5240 (fax) Lai, Jinsheng; Waksman Institute; State Univ of NJ; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-3801; 732-445-5735 (fax); lai@mbcl.rutgers.edu Lambert, Antoine; Verneuil Recherche; 33, rue de la Croix Blanche; 49630 Corne; FRANCE; 41-66-17-00; 41-45-02-61 (fax) Lamkey, Kendall; Agronomy Building; Iowa State University; Ames IA 50011; 515-294-7826; 515-294-9359 (fax); KRLAMKEY@IASTATE.EDU Lampoh, E.; Crops Res Inst; PO Box 3785 Kumasi; Ashanti Region; GHANA; 6221 Lane, Barbara; College of Natural Resources; Dean's Office; University of California; Berkeley CA 94720-3100; 510-643-2203; 510-642-4612 (fax);

babs@nature.berkeley.edu

Lang, Timothy; USAID/KATHMANDU/6190; Washington DC 20523

Langdale, Jane; Department of Plant Sciences; University of Oxford; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; (44)1865275099; (44)1865275147 (fax); jane.langdale@plants.ox.ac.uk

Larkins, Brian; Dept Plant Sciences; University of Arizona; Building #36; Tucson AZ 85721; (520)621-9958; (520)621-3692 (fax); LARKINS@ag.arizona.edu Laudencia-Chingcu@nature.berkeley.edu Laurie, David; JI Centre for Plant Science Res.; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44-01603-452571 x2610; 44-1603-502241 (fax); LAURIED@BBSRC.AC.UK

Lawson, Emily; Avitech Diagnostics Inc; 30 Spring Mill Dr; Malvern PA 19355 Leaver, Chris; Dept Plant Sciences; University of Oxford; South Parks Road; Oxford OX1 3RB; UNITED KINGDOM; 01865 275143; 01865 275144 (fax); Ledger, Elizabeth, NMSU; Biology Dept; Box3AF Dept 30001; Las Cruces NM 88003; 505-646-7963; 505-646-5665 (fax); eledger@nmsu.edu Lee, Danny; Section of Plant Biology; Robbins Hall c/o Neelima Sinha; UC Davis; Davis CA 95616 Lee, Elizabeth A.; OAC Plant Agric Dept; Crop Science Div; Rm 223 Crop Sci Bldg; Guelph, Ont N1G 2W1; CANADA; 519-824-4120x3360; 519-763-8933 (fax);

elee@plant.uoguelph.ca

Lee, Hee Bong; Dept Agronomy, Coll Agriculture; Chungnam Natl Univ; 220 Gung-Dong, Yusung-Gu; Taejon 305-764; KOREA; 82-042-821-5721; 82-042-823-8050 (fax)

Lee, Hsueh-Sheng; Zoology Dept; University of Texas; Austin TX 78712-1064 Lee, Hsueh-Sheng; Zoology Dept; University of Texas; Austin TX 78712-1064 Lee, In-sup; Department of Biology; College of Science; Kyungsung University; Pusan, 608-736; SOUTH KOREA; 051-620-4647; 051-627-4115 (fax) Lee, Michael; Department of Agronomy; Iowa State University; Ames IA 50011-1010; 515-294-7951; 515-294-3163 (fax); mlee@iastate.edu Leland, Tim; Monsanto BB3K; 700 Chesterfield Parkway; Chesterfield MO 63198; 314-737-7208; 314-737-5223 (fax)

Lemaux, Peggy; Department of Plant Biology; 111 Koshland Hall; University of California, Berkeley; Berkeley; CA 94720; 510-642-1589; 510-642-7356 (fax); lemauxpg@nature.berkeley.edu

Leroy, Philippe; INRA; Domaine De Crouelle; 63039 Clermont-Ferrand; Cedex 2; FRANCE; 33 73 624337; 33 73 624453 (fax); leroy@valmont.clermont.inra.fr Lesnick, Marc; Institute of Molecular Biology; University of Oregon; Eugene OR 97403; lesnick@molbio.uoregon.edu Letovsky, Stan; Cereon Genomics, LLC; One Kendall Sq.; Baltimore MD 21210; 410-614-1061; letovsky@gdb.org Levings, C. S.; Department of Genetics; North Carolina State Univ; Box 7614; Raleigh NC 27695-7614; 919-515-7115; 919-515-3355 (fax)

Levites, E. V.; Inst Cytol Genetics; Novosibirsk; RUSSIA Levy, Avraham; Plant Genetics; Novosibirsk; RUSSIA Levy, Avraham; Plant Genetics; Department; Weizmann Institute of Science; Rehovot, 76100; ISRAEL; 972-8-342421; 972-8-466966 (fax); LPLEVY@WEIZMANN.WEIZMANN.AC.IL

Li, De-Bao; Zhejiang Agricultural University; Biotechnology Institute; Hangzhou; Zhejiang 310029; CHINA Li, Jiansheng; Maize Research Lab; Department of Agronomy; Huazhong Agricultural University; Wuhan, Hubei 430070; CHINA; 86-27-7815681-8545; 86-27-7815057 (fax)

Li, Ping; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA
Li, Ping; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA
Li, Qing; China Natl. Cente Biotech. Development; P.O. Box 8118; Beijing 10008; CHINA
Li, Xiao-Fang; DuPont Company; DuPont Experiment Station; E402-2247; Wilmington DE 19880-0402; CHINA; 302-695-8357; 302-695-4296 (fax)
Li, Yongzhong; S Plains Range Res Stn; 2000 18th St; Jilin, P. R., 136100 OK 73801; CHINA; 04441-215179; 04441-214884 (fax); yli@ag.gov
Li, Yongzhong; S Plains Range Res Stn; 2000 18th St; Jilin, P. R., 136100 OK 73801; CHINA; 405-256-7449; 04441-214884 (fax); yli@ag.gov
Li, Yongzhong; S Plains Range Res Stn; 2000 18th St; Jilin, P. R., 136100 OK 73801; CHINA; 405-256-7449; 04441-214884 (fax); yli@ag.gov
Li, Yongzhong; S Plains Range Res Stn; 2000 18th St; Jilin, P. R., 136100 OK 73801; CHINA; 405-256-7449; 04441-214884 (fax); yli@ag.gov
Li, Yongzhong; S Plains Range Res Stn; 2000 18th St; Jilin, P. R., 136100 OK 73801; CHINA; 405-256-7449; 04441-214884 (fax); yli@ag.gov
Li, Yung; 2312 Food Sciences; Iowa State Univ; Ames IA 50011
Li, Zhaohui; Lehman College, CUNY; Biology Dept; 250 Bedford Park Blvd. West; Bronx NY 10468; 718-960-8643; 718-960-8236 (fax); ZHLLC@CUNYVM.CUNY.EDU
Library; Univ Philippines Los Banos; 4031 College; Laguna; PHILIPPINES
Lightfoot, David; Southern Illinois Univ; P.O. #23086-0006Z; Agriculture 174; Carbondale IL 62901-4415; 618-453-1797; 618-453-7457 (fax); GA4082@siu.edu
Lijlegren, Sarah; Dept of Biology Dept Room 1009; Washington Square East; New York NY 10003; 212-998-3962; 212-995-4204 (fax); limj03@mcrcr6.med.nyu.edu
Lim, Jun; New York Univ; Biology Dept Room 1009; Washington Square East; New York NY 10003; 212-998-3962; 212-995-4204 (fax); limj03@mcrcr6.med.nyu.edu
Lim, Bor-yaw; Institute of Molecular Biology; National Chung Hsing Un bylin@dragon.nchu.edu.tw

Lin, Liang-Shiou; USDA/CSREES/NRICGP; STOP 2241; 1400 Independence Ave. SW; Washington DC 20250-2241; 202-401-5042; 202-401-6488 (fax); llin@reeusda.gov

Liu, Aimin; Jiangsu Academy of Agric. Science; Institute of Agrobiol. Genet. & Physiol.; Nanjing 210014; CHINA Liu, Liang-Shi; Zhongshan University; Biotechnology Research Center; Guangzhou 510275; CHINA Liu, QinQin; Dept of Biology; Univ of Minnesota; Duluth MN 55812-2496; 218-726-7271; 218-726-8142 (fax); gliu1@d.umn.edu Liu, Xiangdong; South China Agricultural University; Agronomy Dept.; Wushan, Tianhe, Guangzhou; Guangdong 510642; CHINA Liu, Xiaochuan; China National Rice Research Institute; Genetics & Breeding Dept.; Hangzhou 310006; CHINA Liu, Zhixian; 11 Sangyuan Road; Maize Research Inst; Shandong Academy of Agri. Science; Jinan, 250100; CHINA; (0531)8963721-2313; (0531)8962303 (fax) Lonsdale, David M.; Cambridge Laboratory; IPSR - John Innes Centre; Colney Lane; Norwich NR4 7UH; UNITED KINGDOM; 44 1603 452571; 44 1603 456844 (fax); LONSDALE@bbsrc.AC.UK

LONSDALE@bbsrc.AC.UK Lopes, Mauricio A.; Natl. Maize & Sorghum Res. Ctr.; CNPMS/EMBRAPA; Caixa Postal 151, CEP 35 701-970; Sete Lagoas MG; BRAZIL; 011-55-31-773-2866; 011-55-31-773-9252 (fax); mauricio@cnpms.embrapa.br Lorenzen Dahl, Lisa; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004 Lorenzoni, C.; Istituto di Genetica Vegetale; Universita Cattolica; Sede di Piacenza; 29100 Piacenza; ITALY; (523)599210; (523)599283 (fax); genetica@ipcucsc.bitnet Lorz, Horst; Institut Allgemeine Botanik; Universitat Hamburg; Ohnhorststrasse 18; 22609 Hamburg; GERMANY; 49-40-82282-420; 49-40-82282-229 (fax) Lowe, Brenda; DeKalb Genetics/Monsanto; 62 Maritime Dr; Mystic CT 06355-1958; 860-572-5216; 860-572-5280 (fax); blowe@dekalb.com Lu, Guihua; Pioneer Hi-Bred Internat., Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004 Lu, Mei-Kuang; 305 Manter Hall; Univ. Nebraska; Lincoln NE 68503; (402)472-6084 Lu, Yong-Gen; South China Agricultural University; Guangzhou 510642; CHINA Ludwig, Steven; 709 E. Capitol St., S.E.; Washington DC 20003 Luebberstedt, Thomas; Inst fur Pflanzenzuchtung; Universitat Hohenheim; 70593 Stuttgart; GERMANY; ++711-4593483; Ge-711-4592343 (fax); LUEBBIT@UNI-HOHENHEIM.DE Luo, Ming: Sichuan Aaricultural University; Rice Research Institute; Yaan; Sichuan 62500; CHINA

Luo, Ming; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 62500; CHINA Luo, Rui Bai; Biology Dept, Lehman College; 250 Bedford Park Blvd West; CUNY; Bronx NY 10468; RBLLC@CUNYVM.CUNY.EDU Luthe, Dawn S; Dept Biochemistry; Miss State Univ; Mississippi State MS 39762; 601-325-7733; 601 -325-8664 (fax); dsluthe@ra.msstate.edu Lutz, Joseph; Pillsbury/Green Giant; 1201 N 45th St; LeSueur MN 56058; 507-665-4457; 507-665-2682 (fax); jlutz@pillsbury.com Lutz, Sheila; Dept Agron Plant Genetics; 411 Borlaug Hall, 1991 Buford Circle; Univ of Minnesota; St. Paul MN 55108; 612-625-1728; smlutz@puccini.crl.umn.edu Lynch, Margaret; 1883 21st Ave; San Francisco CA 94122

ysikov, Valery; Inst. of Genet. of AS RM.; st. Paudurie 20; Kishinev-277002; MOLDOVA; (0422)622068; 3732-556180 (fax); Lysikov@gen.as.md

Ma, Hong; Dept Biol, Life Sci Consortium; 519 Wartik Laboratory; Penn State Univ; University Park PA 16802; 814-863-6144/8082; 814-863-1357 (fax); hxm16@psu.edu

MacDonald, M. V.; Plant Breeding International; Maris Lane; Trumpington; Cambridge CB2 2LQ; UNITED KINGDOM; 01223-840411; 01223-844425 (fax) MacRae, Amy F.; Dept of Biology, Campus Box 1229; McDonnell Hall; Washington University; St. Louis MO 63130; 314-935-7509; 314-935-5125 (fax); macrae@biology.wustl.edu

Maddock, Sheila E; Pioneer Hi-Bred Int Inc.; 7300 NW 62nd Ave.; PO Box 1004; Johnston IA 50131-1004; 515-270-4047; 515-270-3444 (fax); maddocks@phibred.com

Maddox, Joyce; Pioneer Hi-Bred Internat Inc; Crop Protection, PO Box 1004; 7300 NW 62nd Ave.; Johnston IA 50131-1004; 515-270-3636; 515-253-2149 (fax); Maddox, Joyce; Pioneer Hi-Bred Internat Inc; Ordp Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, PO Box 1004, 1500 NVV 0210 Ave, 05010301 Protection, Po Box 1004, 1500 NVV 0210 Ave, 05010 Protection, Po Box 1004, 1502 Protection, Po Box 1004, 1502 Protection, Protection, Protection, Protection, Po Box 1004, 1500 NVV 0210 Ave, 05010 Protection, Po Box 1004, 1512 Protection, Po Box 1004, 1512 Protection, Protection, Po Box 1004, 1512 Protection,
Maluf, Mirian; Crop Science; Turner Hall, 1102 S. Goodwin Ave; University of Illinois; Urbana IL 61801 Mangano, MaryLou; DeKalb Genetics Corp.; 62 Maritime Dr.; Mystic CT 06355 Manzocchi, Lucia; Consiglio Nazionale delle Ricerche; Istituto Biosintesi Vegetali; Via Bassini 15; 20133 Milano; ITALY; (39) 02.23699.408; (39) 02.23699.411 (fax);

luman@icm.mi.cnr.it

Marillonnet, Sylvestre; Dept of Botany; 2502 Plant Sciences; Univ of Georgia; Athens GA 30602-7271; 706-542-1857; 706-542-1805 (fax); MARILLONNET@BSCR.UGA.EDU Marocco, Adriano; Universita Cattolica S. Cuore; Istituto Di Genetica Vegetale; Via E. Parmense 84; 29100 Piacenza; ITALY; 39-523-599207; 39-523-599283 (fax);

amarocco@pc.unicatt.it Marshall, Lori; Holden's Foundation Seeds, L.L.C.; P.O. Box 839; 503 S. Maplewood Ave; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax);

lori.marshall@monsanto.com

Martienssen, Rob; Cold Spring Harbor Labs; P.O. Box 100; 1 Bungtown Rd; Cold Spring Harbor NY 11724-2212; 516-367-8322; 516-367-8369 (fax); MARTIENS@CSHL.ORG

Martin, Michael J.; 10454 NW 114th St; Granger IA 50109; 515-999-2548; 515-685-5204 (fax) Martin Sanchez, J. A.; UdL-IRTA Centro R S D; Alcalde Rovira Roure 177; 25006 Lerida; SPAIN; 34-73-702569; 34-73-238301 (fax) Mascarenhas, Joseph P.; Department of Biol Sci; State University of New York; Albany NY 12222; 518/442-4388; 518/442-4354 (fax); jm558@cnsunix.albany.edu Mascia, Peter N.; Ceres, Inc.; 3007 Malibu Canyon Road; Malibu CA 90265; 310-317-8911; 310-317-9978 (fax); pmascia@ceres-inc.com Mather, Diane E.; Plant Sci Dept - Macdonald Col; McGill Univ - 21111 Lakeshore; Ste-Anne-de-Bellevue; Quebec H9X 3V9; CANADA; (514) 398-7854; (514)398-7897

(fax); mather@agradm.lan.mcgill.ca

(tax); mather@agradm.tah.mcgiii.ca Mathur, D. S.; Div. of Genetics; Indian Agr Res Inst; New Delhi-110012; INDIA; 581481 Matthews, Paul; Lehman College, CUNY; 250 Bedford Park Blvd West; Bronx NY 10468; 718-960-4984; 718-960-8236 (fax) Matz, Eileen C.; Dept of Biology; Building 463; Brookhaven National Laboratory; Upton NY 11973; 516-344-3396; 516-344-3407 (fax); matz@bnl.gov Mawgood, Ahmed L. Abdel; Univ Wisconsin; Plant Pathology Dept; Madison WI 53706; amawgood@plantpath.wisc.edu Mazoti, Luis B.; Carlos Croce 145; 1832 Lomas de Zamora; ARGENTINA Mazur, Barbara J.; DuPont Agr Products; Biotechnol Res & Devel; Experimental Sta E402/3226; Wilmington DE 19880-0402; 302-695-3700; 302-695-7361 (fax); Pachera Lineard Lenge Longe Lo Barbara.J.Mazur@usa.dupont.com

Daroara.J.Mazur@usa.cupont.com McCarthy, Susan A.; National Agricultural Library; 10301 Baltimore Blvd; Beltsville MD 20705; 301-504-5510; 301-504-5022 (fax); smccarth@nal.usda.gov McCarty, Donald R.; Vegetable Crops Department; 1255 Fifield Hall; University of Florida; Gainesville FL 32611; 352-392-1928 ext 322; 352-392-6479 (fax); drm@gnv.ifas.ufl.edu McConnell, R. L.; Research & Product Development; Pioneer Hi-Bred International; Box 1004; Johnston IA 50131-1004; (515)270-3363; (515)253-2478 (fax); McConnell, R. L.; Research & Product Development; Pioneer Hi-Bred International; Box 1004; Johnston IA 50131-1004; (515)270-3363; (515)253-2478 (fax); McConnell, Charley, USDA ADS DOFCO.com

McConnelR@phibred.com McCormick, Sheila; USDA-ARS-PGEC; 800 Buchanan Street; Albany CA 94710; 510-559-5906; 510-559-5678 (fax); sheilamc@nature.berkeley.edu McCullough, Andrew; Dept. of Biochemistry; Baylor College of Medicine; Houston TX 77030; 713-798-4622 McCurdy, Leroy; P.O. Box 77; McCurdy Seed Co; Fremont IA 52561; 515-933-4291 McFerson, John; AsgrowSeed Co.; 634 E. Lincoln Way; Ames IA 50010; (515)232-7170; (515)232-6905 (fax) McLaren, James S.; Inverizon Int Inc; 2214 Stoneridge Terrace Court; St. Louis MO 63017-7120; 636-530-6943; 636-530-6945 (fax); mclaren@inverizon.com McMullen, Michael; USDA ARS MWA; Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-7606; 573-884-7850 (fax); mcmullen@teosinte.agron.missouri.edu McWhirter, Ken; 127 Victoria Road; West Pennant Hills; NSW 2125; AUSTRALIA; 02 9484 7417; 02 9484 7417; (fax); kmcwhirt@ozemail.com.au Mead, Doug; Northrup King Co.; 317 330th St.; Stanton MN 55018-4308; (507)663-7623; (507)645-7519 (fax) Meelev, Robert; Trait and Technology Dev.; Pioneer Hi-Bred Int'l; 7300 NW 62nd Ave. - Box 1004; Johnston IA 50131-1004; 515-270-3770; 515-253-2149 (fax); MeelevB@phibred.Com MeeleyRB@phibred.Com

Meghji, Moez; Novartis Seeds; RR13/Box166; Bloomington IL 61704; 309-823-8578; 309-823-9468 (fax); moez.meghji@seeds.novartis.com Mei, Mantong; South China Agricultural University; Genetic Engineering Laboratory; Guangzhou 510642; CHINA Melchinger, Albrecht E.; Universitat Hohenheim; Institut fur Pflanzenzuchtung; Postfach 70 05 62 (350/1); D-70593 Stuttgart; GERMANY; 0711-459-2334; 0711-459-

Melchinger, Notechi E., Oniversital Homenheim, Institut für Phanzenzuchung, Postach 70 05 62 (3507), D-70593 Stutigart, Gernward P, 0711-459-2334, 0711-459-2343 (fax); melchinger@uni-hohenheim.de Melia-Hancock, Susan; Curtis Hall - Agronomy; University of Missouri; Columbia MO 65211; 573-882-6566; 573-884-7850 (fax); susan@teosinte.agron.missouri.edu Melio-Sampayo, Tristao; R. Padre Francisco 16, 5.F.; 1300 Lisboa; PORTUGAL Messing, Jo; Rutgers, The State Univ; Waksman Institute; 190 Frelinghuysen Rd; Piscataway NJ 08854-8020; 732-445-4256; 732-445-0072 (fax); messing@mbcl.rutgers.edu

Mettler, I. J.; Northrup King Co.; 317 330th Street; Stanton MN 55018-4300; 507-663-7643; 507-645-7519 (fax) Meyer, Terry; Pioneer Hi-Bred International; 7300 N.W. 62nd Avenue; P. O. Box 1004; Johnston IA 50131-1004; 515-270-3962; 515-270-3367 (fax); MEYERTE@PHIBRED.COM Meyer, Terry, Pioneer Hi-Bred International, 7300 N.W. 62nd Avende, P. O. Box 1004; Johnston TA 50131-1004; 515-270-3962; 515-270-396 Meyerowitz, Elliot; Biology Dept 156-29; California Inst Tech; Pasadena CA 91125; 818-395-6889; 818-449-0756 (fax) Michelini, Luiz Antonio; R. Ayrton Playsant, 21; Ponta Grossa; Parana 84100-550; BRAZIL; 55-42-223-2774; 55-42-223-2774 (fax) Michiels, Frank; Plant Genetic Systems; Jozef Plateaustraat 22; Gent B-9000; BELGIUM; 32-9-2358475; 32-9-2240694 (fax); FRAL@PGSGENT.BE Micu, V. E.; Scientific Res Inst Maize & Sorghum; Pashcani; Criuleni; 278336 Moldova; MOLDOVA; (3732)-22-478; (3732)-22-73-02 (fax) Mies, David; Northrup King; 306 Meadow Drive - Box 710; St. Joseph IL 61873; 217-469-2746; 217-469-2407 (fax) Mihm, John A.; French Agricultural Research; RR2, Box 294; Lamberton MN 56152; 507-752-7274; 507-752-6132 (fax); JMihm@Prairie.lakes.com Mikula, Bernard C.; Defiance College; 901 College Drive; Defiance OH 43512; 419-784-4010 EXT 426; 419-784-0426 (fax) Milach, Sandra; 1991 Buford Circle; Room 411 Borlang Hall; St. Paul MN 55108; (612)625-6223; (612)625-1268 (fax) Milles, Donald; Tucker Hall; Div. Biological Sciences; University of Missouri; Columbia MO 65211; 573-882-7933; miles@biosci.mbp.missouri.edu Millard, Mark; 117 Plant Intro; Ames IA 50011-1170; 515-294-3715; 515-294-1903 (fax); mimillar@iastate.edu Min, Hwang Kee; Hongcheon Maize Expers 543; 814 Jangnam; Doochon; Hongcheongun; KOREA; 82-366-435-575; 82-366-435-6876 (fax) Min, Shao-Kai; China National Rice Research Institute; Genetics and Breeding; 171 Ti Yu Chang Road, Hangzhou; Zhejiang 310006; CHINA Ming, Ray Reiguang; Hawaii Agric Research Center; 99-133 Aiea Heights Dr; Aiea HI 96701-3911; 808-486-5020 (fax); rming@harc-hspa.com Miranda, Luiz Eugenio C de; Av Barao de Itapura 1481; CX Postal 28; Campinas SP 13001-970; BRAZIL; 019-23154222150 Miura, Y; Maize Breeding Station; Hokkaido Natl. Agr. Exp. Stn.; Hitsuigaaka; Sapporo 062; JAPAN Miyoshi, K.; Sakata Seed Corp.; Kakegawa Breed. STN; Yoshioka 1743-2; Kak

Molina, M. C.; Del Valle Iberlucea 3/11; 1826 Hemedios de Escalada; Buenos Arres; ARGENTINA Montagu, Jonathan; Cold Spring Harbor Lab; PO Box 100; Cold Spring Harbor NY 11724 Mooney, Mark; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102 Moore, Kathy; Molec & Cell Biol Dept; LSS 444; University of Arizona; Tucson AZ 65721; (520)621-3381; (520)621-3709 (fax) Moore, Paul H.; USDA ARS PWA; Experiment Station HSPA; P.O. Box 1057; Aiea HI 96701; 808-487-5561; 808-486-5020 (fax) Moose, Stephen P.; Dept of Crop Sciences; Univ of Illinois; 389 ERML; 1201 W. Gregory Drive; Urbana IL 61801; 217-244-6308; 217-333-4582 (fax); smoose@uiuc.edu Moreira-Filho, Carlos A.; Dept. de Imunologia do ICP-USP; Av. Prof. Lineu Prestes, 2415; 05508-900 Sao Paulo S. P.; BRAZIL Morgante, Michele; DuPont Ag Biotech; Delaware Technol Park; Suite 200 PO Box 6104; Newark DE 19714-6104; 302-631-2638; 302-631-2607 (fax);

michele.morgante@usa.dupont.com

michele.morgante@usa.dupont.com Mori, Naoki; Dept Agron Plant Genetics; Univ of Minnesota, 411 Borlaug Hall; 1991 Buford Circle; St. Paul MN 55108; 612-625-9261; 612-625-1268 (fax) Moro, Gloverson Lamego; Novartis Seeds; Caixa Postal 585; 38406-270 Uberlandia MG; BRAZLL; 034-216-6005; moro@nanet.com.br Morrow, Sasha; Cargill Hybrid Seeds; 2600 W. Galena Blvd; Aurora IL 60506; 630-801-2326; 630-801-2345 (fax) Mottinger, John; Dept Bioch Microb Mol Gen; University of Rhode Island; Kingston RI 02881; 401-874-2625; 401-874-2202 (fax); john.mottinger@uri.edu Motto, Mario; Ist Sper Cereal - Sez Bergamo; Via Stezzano 24; 24100 Bergamo; ITALY; 39-035-313132; 39-035-316054 (fax); motto@tin.it Mozoub, Daniel; Lehman College, CUNY; Biology Dept, c/o Elli Wurtzel; 250 Bedford Park Blvd West; Bronx NY 10468 Mueller, Suzanne; Univ of Wisconsin; 1575 Linden Drive; 430 Moore Hall; Madison WI 53706-1597; 608-262-3660; 608-262-5217 (fax); smmuel1@students.wisc.edu Mulcahy, David; Botany Department; Univ of Massachusetts; Amherst MA 01003; 413-545-2238; 413-545-3243 (fax); dmulcahy@bio.umass.edu Mulligan, Timothy P.; P. O. Box 523; Cold Spring Harbor NY 11724; 516-367-8829; 516-367-4031 (fax); MULLIGAN@CSHL_OPIG Mungoma, Catherine; Mt. Makulu Research Station; P. B. 7; P.O. Box 30563; Chilanga; ZAMBIA; 260-1-278008; 260-1-249127 (fax) Murigneux, Alain; BIOCEM-Groupe Limagrain; Lab Biol Cell Molec, Campus Univ Cezeaux; 24 av des Landais; 63170 Aubiere; FRANCE; 33-4-73-42-79-70; 33-4-73-27-57-36 (fax); alain.murigneux@limagrain.com Murray, Michael G.; Dow AgroSciences; 9330 Zionsville Rd; Indianpolis IN 46268; 317-337-3982; 317-337-4266 (fax); mumurray@dowagro.com Mustell, Robert A.; National Corn Growers Assoc.; 1000 Executive Parkway, Suite 105; St. Louis MO 63141; 314-275-9915x113; 314-275-7061 (fax); mustell@NCGA.com mustell@NCGA.com

Muszynski, Michael G.; Pioneer Hi-Bred Intl.; Agronomic Traits/TTD; 7300 NW 62nd Ave, POB 1004; Johnston IA 50131-1004; 515-254-2637; 515-254-2608 (fax); muszynskimg@phibred.com

Nagle, Barry: National Starch & Chemical Co.; PO Box 380; Forsyth IL 62535; 217-875-2826; Barry.Nagle@nstarch.com Nakagawa, Yoichi; Takii & Company LTD; P.O. Box 7; Kyoto C. P. O.; JAPAN; (075)365-0123; (075)365-0110 (fax) Naranjo, Carlos; Inst Fitotecn Santa Catalina (UNLP); C.C.4 (1836) Llavallol; Buenos Aires; ARGENTINA Nedev, Trentafil; Dept Tissue & Cell Cult; Inst of Genetics; Bulgarian Acad Sci; Sofia; BULGARIA; (+359 2) 75 40 41x233; (+359 2) 75 70 87 (fax);

Nedeva David; Novartis; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257; 919-541-8686; 919-541-8557 (fax); negrottod@am.abru.cg.com Nel, P. M.; Dept of Genetics; Univ of The Witwatersrand; P.O. WITS; Transvaal 2050; SOUTH AFRICA; 011-716-2154; 011-716-8030 (fax) Nelson, Jennifer; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102; 510-642-7085; 510-642-4995 (fax); inelson@nature.berkeley.edu Nelson, Oliver E.; Department of Genetics; 445 Henry Hall; University of Wisconsin; Madison WI 53706; 608-265-4636; 608-262-2976 (fax); oenelson@facstaff.wisc.edu

oenelson@tacstaff.wisc.edu Nelson, Timothy; Department of Biology; PO Box 208104; Yale University; New Haven CT 06520-8104; 203-432-3860; 203-432-5632 (fax); TIMOTHY.NELSON@YALE.edu Nemeth, Janos; Cereal Research Non-Profit Co.; Also Kikoto sor 9; Szeged; HUNGARY; 62-54-555; 62-54-588 (fax) Neuffer, M. G.; 202 Curtis Hall; University of Missouri; Columbia MO 65211; 573-882-7735; 573-884-7850 (fax); Gneuffer@aol.com Newman, T. S.; Wyffels Hybrids, Inc; P.O. Box 246; Atkinson IL 61235; 309-936-7833; 309-936-7930 (fax) Newman, Thomas C; MSU-DOE Plant Res Lab; Plant Biology Bldg; East Lansing MI 48824-1312; 517-353-0854; 517-353-9168 (fax); newmant@pilot.msu.edu Newton, Kathleen; Dept Biol Sci; University of Missouri; Columbia MO 65211; 573-882-4049; Newton@biosci.mbp.missouri.edu Nguyen, Henry T.; Dept of Plant & Soil Science & Inst for Biotech; Texas Tech University; Lubbock TX 79409-2122; 806-742-1622; 806-742-2888 (fax); henry nouven@filtu.edu

henry.nguyen@ttu.edu Noble Jr., Stephen W.; Dept of Corn Breeding; Pioneer Hi-Bred Int'l Inc; P.O. Box 385; Johnston IA 50131-0385; 515-270-3318; 515-270-4314 (fax); NOBLES@PHIBRED.COM

NOBLES@PHIBHED.COM Norton, Robert A.; USDA, ARS, NCAUR Mycotoxin R.U.; 1815 N. University; Peoria IL 61604; 309-681-6251; 309-671-7814 (fax) Nowell, David C; Pannar (Pty) Ltd; PO Box 19; Greytown 3500; SOUTH AFRICA; 27-334-31131; 27-334-71208 (fax) Nutter, Robert; Pioneer Hi-Bred; 7300 NW 62nd Street; Johnston IA 50131-1004; (515)270-3349; (515)270-3367 (fax) Ober, Eric; 1-87 Agriculture Bldg.; University of Missouri; Columbia MO 65211; 573-882-6832; 573-882-1469 (fax) Ogle, Charles W.; P.O. Box 484; Sugar Grove IL 60554; 312-466-4742 Onta, Y.; Kasuga 2-5-1-301; Tsukuba 305; JAPAN Oishi, Karen; Molec & Cell Biol Dept; University of Arizona; Tucson AZ 85721; 520-621-3381 Okagaki, Ronald; Univ Minnesota; Dept Agron Plant Genet; 411 Borlaug Hall, 1991 Buford Circle; St. Paul MN 55108; 612-625-8756; 612-625-1268 (fax); eksand02@dic uma adi okaga002@tc.umn.edu

okaga002@tc.umn.edu
Okuno, Kazutoshi; National Inst of Agrobiol Resources; 2-1-2 Kannondai; Tsukuba; Ibaraki 305; JAPAN; 81-298-38-7458; 81-298-38-7408 (fax); okusan@abr.atfrc.go.jp
Oldroyd, Giles; UC Berkeley; Plant Biology Dept; 111 Koshland Hall; Berkeley CA 94720-3102
Olhott, Paula; Dept Agron & Plant Genetics; 1991 Buford Circle; 411 Borlaug Hall, Univ of Minnesota; St. Paul MN 55113; 612-625-9258; 612-625-1268 (fax)
Openshaw, Steve; Novartis Seeds; 317 330th St; Stanton MN 55018-4308; 507-663-7696; 507-645-7519 (fax); steve.openshaw@seeds.novartis.com
Orr, Alan R.; Department of Biology; University of Northern Iowa; Cedar Falls IA 50614; 319/277-4381; 319/273-2893 (fax); ORR@UNI.EDU
Osterman, John C.; School of Life Sciences; University of Northern Iowa; Cedar Falls IA 50614; 319/277-4381; 319/273-2893 (fax); josterman@unl.edu
Ostrander, Brad; Plant Genetics Group; National Starch and Chemical, Plant Genetics Group; 5648 W. 73rd Street; Indianapolis IN 46278; 317-295-4124; 317-295-4121 (fax); brad.ostrander@nstarch.com
Ottoboni, Laura; CBMEG Inst. Biol.; UNICAMP/Caixa Postal 6109; CEP 13083-970; Campinas SP; BRAZIL; 55-192-397030; 55-192-39-4717 (fax); OTTOBONI@TURING.UNICAMP.BR
Padilla, Chris; UC San Diego; Dept of Biology, 0116; La Jolla CA 92093-7108
Paez, Alix V.; Genetic Enterprises Int'l; 6165 Crabapple Lane; Johnston IA 50131; 515-278-1170; 515-276-9360 (fax); paezgei@worldnet.att.net
Page, Brent; Univ of Missouri; 117 Tucker Hall; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); c670769@showme.missouri.edu
Palmer, R.E.; Dept. of Microbiology; University of Cape Town; Private Bag; Rondebosch 7700; SOUTH AFRICA; 21-650-3269; 21-650-4320 (fax); realmer@iastate.edu
Palmer, Reid; USDA-ARS-CICGR; Iowa State University; Agronomy Department, Room G301; Ames IA 50011; 515-294-7378; 515-294-2299 (fax); realmer@iastate.edu

rpalmer@iastate.edu

Pan, Caixian; Chinese Academy of Agrucultural Sciences; 30 Baishiqiao Road; West Suburb Beijing; Beijing; CHINA Pareddy, Dayakar R.; DowElanco; R&D Building, 306/B-1; 9330 Zionsville Road; Indianapolis IN 46268; (317)337-3646; 317-337-3228 (fax) Parlov, Dragomir; Inst Breeding & Prod Field Crops; Marulicev trg 5; 41000 Zagreb; YUGOSLAVIA; 041-750-311; 41-750-523 (fax) Partas, E. C.; Maize and Sorghum Res. Inst.; Pashcani; Criuleni; 278336 Moldova; MOLDOVA Pataky, Jerald K.; Crop Science, Turner Hall; 1102 S. Goodwin Ave; University of Illinois; Urbana IL 61801; 217-333-6606; 217-244-1230 (fax); j-pataky@uiuc.edu Paterson, Andrew H.; University of Georgia; Rm 162, Riverbend Research Center; 110 Riverbend Road; Athens GA 30602; 706-583-0162/0161; 706-583-0160 (fax); paterson@uga.edu

Patil, M. S.; Agric. Research Station; Gulburua 585101; INDIA; 21120; 091-08472-21120 (fax) Paul, Anna-Lisa; Dept Horticultural Sciences; 1255 Fifield Hall; Univ Florida; Gainesville FL 32611; 352-392-4711x313; 352-392-6479 (fax); ALP@NERVM.NERDC.UFL.EDU

Pawar, S. E.; Nuclear Agriculture Division; Bhabha Atomic Research Center; Trombay Bombay 400085; INDIA; 5563060 ext 2638; 9122-556-0750 (fax) Peacock, Jim; Division of Plant Industry; CSIRO; Canberra ACT 2601; AUSTRALIA; 062-465250 Peng, Jinzhi; State Science & Tech. Commission; China Natl. Ctr. Biotech. Development; 54 Sanlihe Road; Beijing; CHINA Penzes, Eva A.; Dept Molec Cell Biol; 345 LSA; UC Berkeley; Berkeley CA 94720-0001; 510-643-8277; 510-643-6791 (fax) Pereira de Souza, Anete; CBMEG/UNICAMP; Caixa Postal 6109; CEP 13083-970; Campinas SP; BRAZIL; 55-19-239-8351; 55-19-239-7030 (fax);

anete@turing.unicamp.br

Perez, Pascual; Biocem - Groupe Limagrain; 24 Av. Des Landais; 63130 Aubiere; FRANCE; (33) 73427977; (33) 73275736 (fax) Perotti, Enrico; Lisboa 27; Apdo. Postal 6-641; CIMMYT; 06600 Mexico; MEXICO; 5-726-9091; 525-726-7567 (fax); eperotti@cimmyt.mx Peschke, Virginia M.; Plant Sciences, GG6A, Monsanto Co.; 700 Chesterfield Village Parkway; St. Louis MO 63198; (636)737-6939; (636)737-6189 (fax); virginia.m.peschke@monsanto.com

Peterson, Peter A.; Dept of Agronomy; Iowa State University; Ames IA 50011; 515-294-9652; 515-294-2299 (fax); pap@iastate.edu Peterson, Thomas A.; Dept. of Zoology & Genetics; 2206 Molecular Biology; Iowa State Univ.; Ames IA 50011; 515-294-6345; 515-294-0345 (fax); thomasp@iastate.edu Pham, Hiep; Cargill Seed Research; P.O. Box 774; Grinnell IA 50112; (515)236-4911; (515)236-3607 (fax) Phelps-Durr, Tara; Tucker Hall; University of Missouri; Columbia MO 65211; 573-449-4871; 573-882-0123 (fax); c675971@showme.missouri.edu Phillips, Ronald; Agronomy & PI Genetics; 411 Borlaug Hall; University of Minnesota; St. Paul MN 55108; 612-625-1213; 612-625-1268 (fax); DivideSemente una edu

Phillips, Ronald; Agronomy & PI Genetics; 411 Borlaug Hall; University of Minnesota; St. Paul MN 55108; 612-625-1213; 612-625-1268 (fax); Phill005@maroon.tc.umn.edu
Phinney, Bernard O.; Dept. of Biology; 405 Hilgard Avenue; UCLA; Los Angeles CA 90024-1606; (310)825-3177; (310)825-3177 (fax); bop@ucla.edu
Pikley, Kevin V; PO Box MP 163; Mount Pleasant; Harare; ZIMBABWE; 263-4-301807; 263-4-301327 (fax); k.pixley@cgnet.com
Plehn, Steve J.; Cargill Hybrid Seeds; P.O. Box 762; Mt. Vernon IN 47620; (812)838-5218; (812)838-8864 (fax)
Plesset, Judith; Plant and Microbial Development; National Science Foundation; 4201 Wilson Boulevard; Arlington VA 22230; (703) 306-1417; jplesset@nst.gov
Plunkett, Dave; Green Giant Company, M.S. 9921; 330 University Ave. S.E.; Minneapolis MN 55408; 612-330-8007; 612-330-8064 (fax)
Podolskaya, Anna P.; N. I. Vavilov All Union Inst Plant Industry; 44 Herzen Street; 190000, St. Petersburg; RUSSIA; 311-99-45; 311-8762 (fax)
Poethig, R. Scott; Biology Department; Leidy Labs, Univ Penn; Philadelphia PA 19104-6018; 215-898-8915; 215-898-8780 (fax); SPOETHIG@MAIL.SAS.UPENN.EDU
Poglio, Lidia; Inst Fitotecnico de Santa Catalina (UNLP); C.C.4 (1836) Llavallol; Buenos Aires; ARGENTINA
Polacco, Mary; 203 Curtis Hall; University of Missouri; Columbia MO 65211; 573-884-7873; 573-884-7850 (fax); maryp@teosinte.agron.missouri.edu
Pollacsek, M.; Station Amelior PI-INRA; 63039 Clermont Ferrard; FRANCE; 73-62-43-01; 73-62-43-53 (fax)
Pollak, Linda; USDA-ARS; Dept. Agronomy; Iowa State Univ.; Ames IA 50011; 515-294-7831; 515-294-9359 (fax); Impollak@iastate.edu
Pollmer, W. G.; Universitat Hohenheim; Egilolfstr. 25; D-70599 Stuttgart; GERMANY; 49-711-4586315; 49-711-4569008 (fax)

Pollmer, W. G.; Universitat Hohenheim; Egilolfstr. 25; D-70599 Stuttgart; GERMANY; 49-711-4566315; 49-711-4569008 (fax) Poneleit, Charles G.; Agronomy; University of Kentucky; Lexington KY 40546-0091; 606-257-4934; 606-258-1952 (fax); AGR021@UKCC.UKY.EDU Porter, Hedera L.; PO Box 516; Lamberton MN 56152; 507-752-7012; (fax)

Prasanna, B.M.; Division of Genetics; Indian Agricultural Research Institue; New Delhi-110 012; INDIA; bmp@bic-iari.ren.nic.in

Prasanna, B.M.; Division of Genetics; Indian Agricultural Research Institue; New Delhi-110 012; INDIA; bmp@bic-iari.ren.nic.in
Pratt, Richard C.; Dept. Hort. & Crop Science; OSU/OARDC; 1680 Madison Avenue; Wooster OH 44691; 330-263-3972; 330-263-3887 (fax); pratt.3@osu.edu
Price, Carl; Waksman Inst; Rutgers University; Piscataway NJ 08855-0759; 732-445-2920; 732-445-5735 (fax); Price@mbcl.rutgers.edu
Prigge, Michael; Institute Molec Biol; Univ of Oregon; Eugene OR 97403
Pring, Daryl R.; Dept of Plant Pathology; 1453 Filfield Hall; University of Florida; Gainesville FL 32611; 352-392-3638; 352-392-6532 (fax); drpg@gnv.ifas.ufl.edu
Prioli, Laudenir M.; Depto. Genetica; IB/CBMEG, Univ Estad Campinas; CP 6109; Campinas 13083-970; BRAZIL; 55-192-397030; 55-192-394717 (fax); LAUDENIR@CCVAX.UNICAMP.BR
Prioul, Jean-Louis; IBP Bat 630; Universite de Paris-Sud; 91405 Orsay Cedex; FRANCE; 33169336473; 33169336424 (fax); prioul@ibp.u-psud.fr
Prosen, Dennis; Harris Moran Seed Co.; 100 Breen Rd.; San Jun Bautista CA 94045; (408)623-4223; (408)623-2260 (fax)
Pryor, Tony; Plant Industry CSIRO; PO Box 1600; Canberra ACT 2601; AUSTRALIA; 61-02-6246 5494; 61-02-6246 5000 (fax); tony.pryor@pi.csiro.au
Puiggoanan, Michael; Dept of Genetics; Box 7614; NC State University; Raleigh NC 27695-7614; michaelp@unity.ncsu.edu
Qin, Lu; Institute of Genetics; and Crop Breeding; Fuzhou 0591; CHINA
Qiua, Fi, Institute of Genetics, Lab No. 801; Beijing 100101; CHINA
Qiua, Fi, Institute of Genetics, Resources Cons Program; Univ of California; 1 Shields Ave; Davis CA 95616-8602; 530-754-8502; 530-754-8505 (fax); coqualset@ucdavis.edu

coqualset@ucdavis.edu

Quarrie, Steve; John Innes Centre; Norwich Research Park; Colney; Norwich NR4 7UH; UNITED KINGDOM; 44-1603-452571; 44-1603-502241 (fax); QUARRIE@BBSRC.AC.UK

Quayle, Tom; The American University; 113 Sharia Kasr El-Aini; 11511 Cairo; EGYPT; quayle@aucegypt.edu Quebedeaux, Bruno; Dept Nat Res Sci & Landsc Arch; Plant Sci Bldg 2130; University of Maryland; College Park MD 20742; 301-405-4336; 301-314-9308 (fax); BQ1@umail.umd.edu

Gurgumail.umc.eou Qun Hui, Lin; Fujian Agricultural College; Dept. of Agronomy; Jingshian, Fuzhou; Fujian 350002; CHINA Raboy, Victor; USDA-ARS-NSGGRF; PO Box 307; Aberdeen ID 83210; 208-397-4162; 208-397-4165 (fax); vraboy@uidaho.edu Rabson, Robert; Div. of Energy Bioscience; Office of Basic Energy Sci; U.S. Dept of Energy, ER-17 GTN; Washington DC 20545; 301-903-2873; 301-903-1003 (fax) Racchi, Milvia L.; Genetics Unit; Univ of Florence; Via San Bonaventura 13; 50145 Firenze; ITALY; 55-573201; 55-580341 (fax); gene_agr@cesit1.unifi.it Rafalski, Antoni; DuPont Agric Biotechnol; Delaware Technol Park, Suite 200; 1 Innovation Way, PO Box 6104; Newark DE 19714-6104; 302-631-2612; 302-631-2607 (fax); J-Antoni.Rafalski@usa.dupont.com

(tax); J-Anton. Haraiski@usa.dupont.com Ragot, Michel; Novartis Seeds; 12, Chemin de l'Hobit; F-31790 Saint-Sauveur; FRANCE; 33(0)562799902; 33(0)562799996 (fax); michel.ragot@seeds.novartis.com Raizada, Manish; Dept Biol Sci; Stanford Univ; Stanford CA 94305-5020; 650-723-2609; 650-725-8221 (fax); raizada@leland.stanford.edu Ralston, Ed; DNA Plant Technology Corp; 6701 San Pablo Avenue; Oakland CA 94608; 510-547-2395; 510-547-2817 (fax); raizada@leland.stanford.edu Ramsey, Ann; P.O. Box 3311; Urbana IL 61801; 217-384-5699; amramsey@uiuc.edu Rao, P. N.; Dept of Botany; Andhra University; Visakhapatnam 530003; INDIA; 54871 ext 390 Rapp, William; Department of Biology; Univ. of Missouri-St. Louis; 8001 Natural Bridge Rd.; St. Louis MO 63121-4499; 314-553-6225; 314-553-6233 (fax);

swdrapp@umslvma.umsl.edu

Rayburn, A. Lane; Crop Sci, 320 ERML; 1201 W. Gregory; Univ of Illinois; Urbana IL 61801; (217)333-4777; (217)333-9817 (fax); arayburn@uiuc.edu
Rayburn, A. Lane; Crop Sci, 320 ERML; 1201 W. Gregory; Univ of Illinois; Urbana IL 61801; (217)333-4777; (217)333-9817 (fax); arayburn@uiuc.edu
Reddy, Arjula; School of Life Sci; Univ of Hyderabad; Hyderabad-500 046; INDIA; 0091-40-3010265,3033123; 0091-40-3010120 (fax); arjulsl@uohyd.ernet.in
Reddy, Gurjal; Department of Genetics; Osmania University; Hyderabad-500007; INDIA; 868951 Ext. 375; 91-0842-868087 (fax)
Redinbaugh, Margaret; USDA-ARS; OARDC; Dept Plant Pathology; Wooster OH 44691; 330-263-3965; 330-263-3841 (fax); redinbaugh.2@osu.edu
Reid, L. M.; Eastern Cereal & Oilseed Res Centre; Agriculture and Agri-Food Canada; Bldg 121 Central Experimental Farm; Ottawa, Ontario K1A 0C6; CANADA; 613-759-1619; 613-952-9295 (fax); reidl@em.agr.ca
Rhee, Seung; Carnegie Institution of Washington; 290 Panama St.; Stanford CA 94305
Rhodes, Carol; 219 Bay Tree Rd.; San Carlos CA 94070-3816; 650-598-9469; 650-598-9469 (fax); carolrhodes@hotmail.com
Ribaut, Jean-Marcel; CIMMYT; Apdo. Postal 6-641; 06600 Mexico D.F.; MEXICO; 595-54400/54410; 595-54425 (fax); JRIBAUT@ALPHAC.CIMMYT.MX
Rice, Doug; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 22; Johnston IA 50131-1004
Richards, Eric; Biology Dept.; Washington University; St. Louis MO 63130; 314-935-7196; richards@biodec.wustl.edu
Richter, Todd E.; Plant Path. Dept.; Throckmorton Hall; Manhattan KS 66506; (913)532-6176; (913)532-5692 (fax); trichter@ksuvm.ksu.edu
Riera-Lizarazu, Oscar; Dept. Agronomy & Plant Genetics; Univ. Minnesota; 411 Borlaug Hall, 1991 Buford Circle; St. Paul MN 55108-6026; (612)625-6223; (612)625-1268 (fax)

1268 (fax)

Rinehart, Karl; Box 187; Marshalltown IA 50158; 515-752-2170

trochefo@uiuc.edu

Rocky, Sally; USDA, NRICGP; 901 D. Street, SW, Room 323; Washington DC 20250 Rodermel, S.; Department of Botany; Bessey Hall; Iowa State University; Ames IA 50011; 515-294-8890; 515-294-1337 (fax); S1SRR@ISUVAX.BITNET Rogowsky, Peter; RCAP; ENS-Lyon; 46 Allee d'Italie; F-63364 Lyon cedex 07; FRANCE; 33-472-72-86-07; 33-4-72-72-86-00 (fax); progowsk@ens-lyon.fr Romero-Severson, Jeanne; Purdue University; Department of Forestry and Natural Resources and; Department of Agronomy; Room 206C WSLR; 1159 Forestry Bldg.; West Lafayette IN 47907-1159; 765-496-6801; 765-496-2422 (fax); romeros@fnr.purdue.edu Rood, Tracy; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004 Roote, Caration; 1220 Oak Villa React Dellas 0.08, 27328; 614, 766 9250 (fax); romero@univers@un

Rosato, S. Caprice; 1220 Oak Villa Road; Dallas OR 97338; 541-750-8750 (fax); rosatoc@ucs.orst.edu Rosichan, Jeffrey; Novartis Seeds, Inc.; Research Center; 317 330th St.; Stanton MN 55018-4308; 507-663-7642; 507-645-7519 (fax); jeff.rosichan@seeds.novartis.com

Rosielle, A.; Monsanto-International Assignment; Mail Stop 5045; 800 N Lindbergh; St. Louis MO 63167 Roth, Brad; Pioneer Hi-Bred Internat, Inc.; 7300 NW 62nd Ave.; Box 1004; Johnston IA 50131-1004; (515)270-3789; (515)253-2478 (fax); rothba@phibred.com Rubenstein, Irwin; 1838 Parliament Rd; Leucadia CA 92024-1030

Rubenstein, Irwin; 1838 Parliament Rd; Leucadia CA 92024-1030 Rubenstein, Irwin; 1838 Parliament Rd; Leucadia CA 92024-1030 Ruff, Thomas G.; Monsanto-Ceregen; 700 Chesterfield Pkwy North; AA3E; St. Louis MO 63198; 314-737-7023; 314-737-6047 (fax); thomas.g.ruff@monsanto.com Russell, Doug; Monsanto-Agrocetus, Inc.; 8520 University Green; Middleton WI 53562; 608-821-3443; 608-836-9710 (fax); douglas.a.russell@monsanto.com Russell, Ken; Univ of Nebraska; Dept of Agronomy; PO Box 830915; Lincoln NE 68583; 402-472-1562; 402-472-7904 (fax); KRUSSELL3@unl.edu Saab, Imad; Crop Sci, Turner Hall; 1102 S. Goodwin Ave.; Univ of Illinois; Urbana IL 61801; 217-333-7585; 217-333-6064 (fax); i-saab@uiuc.edu Sachan, JKS; Division of Genetics; I.A.R.I.; New Delhi-110012; INDIA; 91-011-5783077; 91-011-5752006 (fax) Sacher, Robert; Hunt-Wesson; Research and Development; 1645 W. Valencia Drive; Fullerton CA 92833-3899; 714-680-2822; 714-449-5166 (fax); RFSACHER@CLASS.ORG Sachs, Marty; USDA/ARS; S108 Turner Hall; 1102 S. Goodwin Ave; Urbana IL 61801; (217)244-0864/333-9743lab; (217)333-6064 (fax); msachs@uiuc.edu Saedler, Heinz; Max-Planck Inst Zuchtungsf; Carl-von Linne-Weg 10; D 50829 Koln; GERMANY; 221-5062-100; 221-5062-113 (fax) Saghai Maroof, M. A.; CSES Department; VPI & SU; Blacksburg VA 24061; 540-231-9791; 540-231-9731; 540-231-9743 (fax); SMAROOF@VT.EDU Salamini, Francesco; Max Planck Inst Zuchtungsf; Abt Pflanzenz Ertragsphysiol; D-50829 Koln; GERMANY; 49-221-5062400; 0049-221-5062413 (fax) Salerno, Juan C.; PJE. San Sebastian 439; 1405 Buenos Aires; ARGENTINA; 54-1-15-949-3685; 54-1-450-0805/1876 (fax); issalerno@inta.gov.ar Salimath, S. S.; Plant Biology Div; PO Box 2180; The S.R. Noble Foundation; Ardmore OK 73402; 405-221-7349; 405-221-7380 (fax); ssalimath@noble.org Salvador, Ricardo J.; Iowa State University; Dept. of Agronomy; 1126 Agronomy Hall; Ames IA 50011-1010; 515-294-9595; 515-294-8146 (fax); RISALVAD@IASTATE.EDU

San Miguel, Phillip; HANS 339; Dept. of Biological Sciences; Purdue University; West Lafayette IN 47907; 765-494-4919; 765-496-1496 (fax);

santos, MA; Dept Genetica Molecular; Centro Invest Desarrollo; Gorge Girona 18-24; 08034 Barcelona; SPAIN; 34-3-4006100; 34-3-2045904 (fax) Santos, MA; Dept Genetica Molecular; Centro Invest Desarrollo; Gorge Girona 18-24; 08034 Barcelona; SPAIN; 34-3-4006100; 34-3-2045904 (fax) Sarkar, Kumud R.; 77B, Ekta Apartments; Block A-2/B; Paschim Vihar; New Delhi 110 063; INDIA; kurasar@del3.vsnl.net.in Sasaki, Takuji; Rice Genome Research Program; STAFF Institute, 446-1, Ippaizuka; Kamiyokoba, Tsukuba; Ibaraki 305-0854; JAPAN; 81-248-38-7441; 81-248-38-

 Sasaki, Takuji; Rice Genome Research Program; STAFF Institute, 440-1, ipparture, inanyologa, reanaut, rotatal coo occup, entropy and coordinate Schichnes, Denise E.; Depi of Flant Biology, 117 Rostnand Flan, Only Gamorna Berkerg, Berkerg, Berkerg, Granzer, Granzer

rschmidt@ucsd.edu

rschmidt@ucsd.edu Schnable, Patrick; Dept of Agronomy; G405 Agronomy Hall; Iowa State Univ; Ames IA 50011; 515-294-0975; 515-292-2299 (fax); Schnable@iastate.edu Schneeberger, Richard G.; CERES, INC; 3007 Malibu Canyon Road; Malibu CA 90265; 310-317-8924; 310-317-8998 (fax); rschnee@ceres-inc.com Schneemman, Martha C; Illinois State University; 4120 Biological Sciences; Normal IL 61790-4120; 309-438-3088; 309-438-3722 (fax); MCSCHNEE@ilstu.edu Schnicker, Bruce; Comnuts; 1000 S. Edgewood Ave.; P.O. Box 830; Urbana OH 43078; 513-652-1321; 513-653-3675 (fax) Scholl, Randy; Arabidopsis Biol Resource Center; Ohio State; 1735 Neil Ave.; Columbus OH 43210; 614-292-0603; 614-292-0603 (fax); scholl.1@osu.edu Schramke, Mary; Bio-Rad Laboratories, Life Sciences Group; 2000 Alfred Nobel Drive; Hercules CA 94547; 510-741-6717; 510-741-1051 (fax) Schulman, Alan H.; Univ Helsinki; Institute of Biotechnology; P.O. Box 56, Viikinkaari 9; 00014 Helsinki; FINLAND; 358-0-708-59366; 358-0-708-59422 (fax); aeschulman@oregoi.bekinki fi

aschulman@operoni.helsinki.fi

Schultes, Neil; Dept Biochem & Genetics; Conn Agric Exper Sta; 123 Huntington St; New Haven CT 06511; 203-789-6912; 203-789-7232 (fax) Schwall, Michael; Suedwestdeutsche Saatzucht; Im Rheinfeld 1-13; 76437 Rastatt; GERMANY; 49-7222-7707-0; 49-7222-770777 (fax); schwall@sun1.ruf.unifreiburg.de

Schwartz, Drew; Biology Dept; Indiana University; Bloomington IN 47405; 812-855-6060; 812-855-6705 (fax); Schwartz@bio.indiana.edu Scott, Lu Ann; Dept Biol Sci; University of Idaho; Moscow ID 83844-3051

Selzer, Gerald; Research Resources; National Science Foundation Room 615; 4201 Wilson Blvd.; Arlington VA 22230; (703)306-1469; gselzer@nsf.gov Senior, Lynn; Novartis Agribusiness Biotech Res, Inc; 3054 Cornwallis Rd; Research Triangle Park NC 27709; 919-597-3041; 919-541-8585 (fax); lynn.senior@nabri.novartis.com

Seo, Beom-Seok; 2154 Molec Biol Bldg; Iowa State Univ; Dept Biochem, Biophys & Mol Biol; Ames IA 50011; 515-294-8202; 515-294-0453 (fax); beoseok@iastate.edu Setter, Tim L; Department of Soil Crop and Atm. Sci.; 519 Bradfield Hall; Cornell University; Ithaca NY 14853; 607-255-1701; 607-255-2644 (fax); Its1@Cornell.edu Settles, Mark; Univ Florida; 2235 Fifield Hall, PO Box 110690; Horticultural Sci; Gainesville FL 32611; 352-392-1928 ext 308; 352-392-6479 (fax) Sevilla P., Ricardo; Programa de Maiz; Univ Nacional Agraria; Aptdo 456, La Molina; Lima; PERU; 51-14 495647; 51-14 495670 (fax); rsevilla@lamolina.edu.pe Shadley, Jeff and Gwen Krill-; 7018 Chestnut St.; Milwaukee WI 53213-2742

Shamina, Ziata; Academy of Sciences; K. A. Timiryazev Inst. Plant Phys.; Botanicheskaya 35; 127276 Moscow; RUSSIA Shands, Henry L.; USDA-ARS-OA, Rm 319-A; Jamie L. Whitten Federal Bldg; 14th & Independence Ave, SW; Washington DC 20250-0300; 202-205-7835; 202-690-Shands, nenry L, OSDAARO-OA, nin StarA, Janie L, Winter Leveral Didg, 14th & independence Pro, 641, Rushington De Lever Ceer, 121, 1434 (fax); shands@sun.ars-grin.gov
 Shao, Qi-Quan; Academia Sinica; Genetics Institute 917 Bldg.; Datun Road, Andingmen Wai; Beijing 100101; CHINA
 Sharp, Peter; Plant Breeding Institute; University of Sydney; Cobbitty Road; Cobbitty NSW 2570; AUSTRALIA; 61-46-512-600; 61-46-512-578 (fax);

pbic00@angis.su.oz.au

pbic00@angis.su.oz.au Shaver, Donald L; Western Corn Genetics Co.; 20250 Palou Dr.; Salinas CA 93908; 831-455-1492; 831-455-0467 (fax) Shcherbak, Victor; Krasnodar Res Inst Agric; c/o Zeneca Moscow; Bolshoi Strochenovski Pereulok; Moscow 113054; RUSSIA; 7-503-2306111; 7-503-2306119 (fax) Sheen, Jen; Dept. of Molecular Biology; Wellman 11, MGH; Boston MA 02114; 617-726-5916; 617-726-6893 (fax); sheen@frodo.mgh.harvard.edu Shen, Jen; Dept. of Molecular Biology; Wellman 11, MGH; Boston MA 02114; 617-726-5916; 617-726-6893 (fax); sheen@frodo.mgh.harvard.edu Shen, Jennie; P.O. Box 80402, E402/4255; DuPont Co.; Wilmington DE 19880-0402; (302)695-1246; (302)695-4296 (fax); jennie.b.shen@usa.dupont.com Shen, Yu-Wei; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA Shen, Zong-Tan; Zhejiang Agricultural University; Institute of Nuclear-Agric. Science; Hangzhou; Zhejiang 310029; CHINA Shen, Zong-Tan; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zejiang 310029; CHINA Shen; Zong-Tan; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zejiang 310029; CHINA Shen; Zong-Tan; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zejiang 310029; CHINA Shen; Zong-Tan; Zhejiang Agricultural University; Dept. of Agronomy; Hangzhou; Zejiang 310029; CHINA Sheridan, William; Biology Department; Univ of North Dakota; PO Box 9019 Univ Station; Grand Forks ND 58202-9109; 701-777-4479 or -4705; 701-777-2623 (fax) Shiga, Toshio; Sakata Seed Corp; Plant Bio Center, SAKATA SEED Corp; 358 Uchikoshi Sodegaura; Chiba 299-02; JAPAN; 438-75-2369 Shigemori, I; Chusin Agr. Exp. Stn.; Sooga Shiojiri; Nagano 399-64; JAPAN; shige@chushin-exp.pref.nagano.jp Short, Kent E.; Carnia Seed (Pty) Ltd.; P.O. Box 7424; Petit 1512; SOUTH AFRICA; (011)965-1905; (011)965-1906 (fax) Shotwell, Mark A; Dept of Biology; 123 Vincent Science Hall; Slippery Rock Univ; Slippery Rock PA 16057-1326; 724-738-2476; 724-738-2188 (fax);

mark.shotwell@sru.edu

Siddiqui, Khushnood A.; Int Assoc for Promotion of New; Genetical Approaches to Crop Imp; 387 Talpur Colony; Tandojam Sind; PAKISTAN; 92 2233-5759; 92 2233-5728 (fax)

Sidorenko, Lyuda; 2292-1 Molec Biol; Iowa State Univ; Ames IA 50011; 515-294-3277; Iuda@iastate.edu Simcox, Kevin; Pioneer Hi-Bred Intl Inc.; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-4178; 515-270-3444 (fax); simcoxkd@phibred.com

Sims, Lynne E.; Trait & Technology Development; Pioneer Hi-Bred Internati; 7300 NW 62nd Ave/P.O. Box 1004; Johnston IA 50131-1732; 515-270-3652; 515-270-3367 (fax); SIMSL@PHIBRED.com

Singh, Karam; Dept Mol, Cell & Devel Biol; 405 Hilgard Avenue; UCLA; Los Angeles CA 90095-1606; 310-206-8259; 310-206-3987 (fax); Ksingh@ucla.edu Sinha, Neelima; Section of Plant Biology; Division of Biological Sciences; University of California; Davis CA 95616; 530-754-8441; 530-752-5410 (fax); NRSINHA@UCDAVIS.EDU

NRSINHA@UCDAVIS.EDU Sinibaldi, Ralph; 1780 Acacio C1.; Fremont CA 94536; 510-794-6410 Sisco, Paul; The American Chestnut Foundation; 14005 Glenbrook Ave.; Meadowview VA 24361; 540-944-4631; paul@acf.org Sleper, David A.; Agronomy Dept; 210 Waters Hall; University of Missouri; Columbia MO 65211; 573-882-7320; 573-882-1467 (fax); dsleper@psu.missouri.edu Smith, Alan G.; Dept Horticultural Science; 356 Alderman Hall, Univ. of MN; 1970 Folwell Av.; St Paul MN 55108; 612-624-9290; alan@molbio.cbs.umn.edu Smith, Howie; Pioneer Hi-Bred International; 7300 NW 62nd Ave.; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3539; 515-270-4312 (fax); SMITHO@Phibred.com Smith, James D.; PO Box 2132; Department Soil & Crop Sci; Texas A & M University; College Station TX 77843; 409-845-8276 Smith, Laurie G.; Biology Dept 0116; U. C. San Diego; 9500 Gilman Drive; La Jolla CA 92093-0116; 858-822-2531/2558; 858-534-7108 (fax); Ismith@biomail.ucsd.edu Smith, Margaret E.; Cornell Univ; 252 Emerson Hall; Dept of Plant Breeding; Ilhaca NY 14853; 607-255-1654; 607-255-6683 (fax); mes25@cornell.edu Smith, Steve; Pioneer Hi-Bred Internati; P.O. Box 1004; Johnston IA 50131-9410; 515-270-4312 (fax); SMITHS@PHIBRED.COM Snape, John W.; Cambridge Laboratory; JI Centre for Plant Science Research; Colney Lane; Norwich NR4 7UJ; UNITED KINGDOM; 44-1603-452571; 44-1603-502270 (fax)

(fax) Sokolov, Victor A.; Institute of Cytology and Genetics; Russian Academy of Sciences; Lavrentjev str., 10; Novosibirsk 630090; RUSSIA; 383-2-33-34-71; 383-2-33-12-

78 (fax); sokolov@ghost.bionet.nsc.ru Somers, David A.; Dept Agron & Plant Genet; University of Minnesota; 1991 Upper Buford Cir.; St. Paul MN 55108; 612-625-5769; 612-625-1268 (fax);

somer001@maroon.tc.umn.edu Somerville, Chris; Plant Biology Dept; Carnegie Institution; 290 Panama St; Stanford CA 94305; 650-325-1521x203; 650-325-6857 (fax); crs@andrew.stanford.edu Song, Xiangfu; China National Rice Research Institute; 171 Tiyuchang Road; Hangzhou 310006; CHINA Song, Yunchun; Life Science College; Wuhan University; Wuhan 430072 P.R.O.; CHINA; (027)/822712-4505; 7813833 (fax); ycsong@usa.net

Song, Turchain, Ele Science Conege, Wahan Song P.H.O., Orniva, (027)76227124305 (1825) (18305) (1830), (csung@sa.het Sowinski, Steve; Illinois State Univ; 4120 Dept Biological Sci; Normal IL 61790; 309-438-3088; 309-438-3722 (fax); gsowin@ilstu.edu Spray, Clive R.; Dept. of Biology; 405 Hilgard Av; UCLA; Los Angeles CA 90024-1606; 310-825-3177; 310-825-3177 (fax) Springer, Patricia; Univ of California; Dept Bot and Plant Sci; Riverside CA 92521; 909-787-5785/4549; 909-787-4437 (fax); patricia.springer@ucr.edu Srinivasan, Ganesan; CIMMYT Maize Program; Lisboa 27, Aptdo Postal 6-641; 06600 Mexico, D. F.; MEXICO; 52-5-726-9091 Ext. 1116; 52-5-726-7558/59 (fax); GSRINIVASAN@CIMMYT.MX

St. Clair, Grace; Pioneer Hi-Bred Internat Inc; Trait & Technology Dept; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004

Stack, Stephen; Department of Biology; Colorado State University; Fort Collins CO 80523-1878; 970-491-6802; 970-491-0649 (fax); sstack@lamar.colostate.edu Staiger, Chris; Dept. of Biological Sciences; Purdue University; 321A Hansen Bldg.; West Lafayette IN 47907; 765-496-1769; 765-496-1496 (fax); CSTAIGER@BILBO.BIO.PURDUE.EDU

Start, William; DeKalb Genetics; 62 Maritime Drive; Mystic CT 06355; 860-572-5223; 860-572-5240 (fax)

Starr, William; Dekalo Genetics; 62 Maritime Drive; Mystic C1 06350; 860-572-5223; 860-572-5240 (fax)
 Steffensen, D. M.; 506 Morrill Hall, Cell Biol; 505 S. Goodwin Ave; University of Illinois; Urbana IL 61801; 217-333-3087; 217-244-1648 (fax)
 Stein, Nils; Inst Plant Biology; Univ of Zurich; Zollikerstr 107; Zurich 8008; SWITZERLAND; 41-1-634-8223; 41-1-634-8257 (fax); nstein@botinst.unizh.ch
 Stern, David B.; Boyce Thompson Inst. Plant Res. Inc.; Tower Road; Ithaca NY 14853-1801; (607)254-1306; (607)254-1242 (fax); ds28@corneil.edu
 Stiles, J. I.; Dept. of PI & Molec Physiology; Univ. Hawaii at Manoa; Honolulu HI 96822; 808-956-7354; 808-956-3542 (fax); stiles@hawaii.edu
 Stinard, Philip; USDA/ARS; S123 Turner Hall; 1102 S. Goodwin Ave.; Urbana IL 61801-4798; (217)333-6631; (217)333-6604 (fax); pstinard@uiuc.edu
 Stuber, Charles W.; Dept of Genetics; North Carolina State UnivBox 7614; 3513 Gardner Hall; Raleigh NC 27695-7614; 919-515-5834; 919-515-3355 (fax); cstuber@nsue.edu
 Studes, E. D.; Biolengy: Univ. of Victoria, BC V8W 3N5; CANADA; 250-472-4337; styles@uvic.ca

Styles, E. D.; Biology; Univ of Victoria, PO Box 3020; Victoria BC V8W 3N5; CANADA; 250-477-4337; styles@uvic.ca Subbaiah, Chalivendra; University of Illinois; Crop Sci, S-27 Turner Hall; 1102 S. Goodwin Ave.; Urbana IL 61801-4730; 217-333-9743; 217-333-6064 (fax);

Sullivan, Sue; Garst Seed Co.; PO Box 8; Kunia HI 96759; 808-688-1477; 808-688-1479 (fax) Sullivan, Tom; Laboratory of Genetics; 445 Henry Mall; University of Wisconsin; Madison WI 53706; 608-262-4934; 608-262-2976 (fax); tdsulliv@facstaff.wisc.edu Sun, Chongrong; Fudan University; Dept. of Biochem.; Handan Road 220; Shanghai 200433; CHINA Sundaresan, V.; Institute of Molecular Agrobiology; National University of Singapore; 59A The Fleming, 1 Science Park Dr; Singapore 118240; INDIA; 65-8723339; 65-8725349 (fax)

Sundberg, Marshall D.; Div Biol Sciences; Emporia State Univ; 1200 Commercial St; Emporia KS 66801; 316-341-5605; 316-341-6055 (fax); sundberm@esumail.emporia.edu

Sung, Tong Ming; Dept of Agronomy; Beijing Agric Univ; 912 Research Building; Beijing 100094; CHINA; 86-010-62891851; 010-62891055 (fax);

gymz@public.cau.edu.cn Suprasanna, P.; Plant Biotechnology Division; Bhabha Atomic Research Centre; Trombay, Bombay 400 085; INDIA; 91-22-556-3060x2571/3276; 91-22-556-0750 (fax) Suresh, Jayanti; Dept. of Agronomy; 513 Borlaug Hall; 1991 Buford Cr.; St. Paul MN 55108; (612)625-1208 Suttie, Janet; CIBA; PO Box 12257; 3054 Cornwallis Rd; Research Triangle Park NC 27709-2257

Swiecicki, W.K.; Polish Academy of Sciences; Institute of Plant Genetics; ul. Strzeszynska 34; 60-479 Poznan; POLAND; 48-61-8233-511; 48-61-8233-671 (fax); wswi@igr.poznan.pl

Sylvester, Anne W.; Botany Dept; PO Box 3165; Univ of Wyoming; Laramie WY 82071-3165; 307-766-6378; 307-766-2851 (fax); annesyl@uwyo.edu Szalma, Stephen; 302 Curtis Hall; Univ Missouri; Columbia MO 65211; 573-882-2033; szalma@bigfoot.com

Szick, Kathy; Bot Plant Sci; UC Riverside; Riverside CA 92521

Szick, Kathy; Bot Plant Sc; UC Riverside; Riverside CA 92521 Tadmor, Yaakov; Dept of Horticulture; 1201 Gregory; University of Illinois; Urbana IL 61801-4798; 217-244-3388; 217-333-9817 (fax) Tagliani, Laura; Pioneer Hi-Bred Internat Inc; PO Box 1004; Johnston IA 50131-1004; 515-270-4188; 515-270-3367 (fax); TAGLIANILA@PHIBRED.COM Tan, C. C. (Jia Zheng); Fudan University; Inst. of Genet.; Shanghai 20043; CHINA Tanksley, Steven D.; Dept. Plant Breeding; Cornell University; 252 Emerson Hall; Ithaca NY 14853 Tao, Quanzhou; 320 Yue-Yang Road; Shanghai 20031; CHINA; 86-21-4374430; 86-21-4378357 (fax) Tausta, Susan; Dept of MB&B; 205 Hall-Atwater Labs/Lawn Ave; Wesleyan Univ; Middletown CT 06459; 860-685-3373 Taylor, Brian H.; Dept of Biology; Texas A&M Univ; College Station TX 77843-3258; 409-845-7754; 409-845-2891 (fax) Taylor, Loverine P.; Genetics & Cell Biology; 301 Science Hall; Washington State University; Pullman WA 99164-4234; 509-335-3612; 509-335-8690 (fax); Taylor, Qweu edu Itaylor@wsu.edu

Itaylor@wsu.edu Taylor, W. C.; CSIRO; Division of Plant Industry; G.P.O. Box 1600; Canberra ACT 2601; AUSTRALIA; (61-6)246-5223; (61-6)246-5000 (fax); bt@pican.pi.csiro.au Tenborg, Robin; Pioneer Hi-Bred Intl, Inc; 733 NW 62nd Ave; Johnston IA 50131-1004; 515-270-5951; 515-253-2149 (fax) Thompson, Richard; Max Planck Inst Zuchtungsf; Carl-von-Linne Weg 10; D-50829 Koeln; GERMANY; 49-221-5062-440/441; 49-221-5062-413 (fax); thompson@mpiz-koeln.mpg.de Thornsberry, Jeffry; Biol Sci; 324 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-8033; 573-882-0123 (fax); jmt@biosci.mbp.missouri.edu Tierney, Mary L.; Marsh Life Sciences Bldg.; University of Vermont; Burlington VT 05405-0086; 802-656-0434; mtierney@moose.uvm.edu Tiffany, Doug; Corn Research; Pioneer Hi-Bred, Int.; Rt. 8, Box 113A; Mankato MN 56001; (507)625-3252; (507)625-6446 (fax); TIFFANYD@PHIBRED.COM Till, Bradley; Inst Molec Biol; Univ of Oregon; Eugene OR 97403 Timmermans, Marja; Cold Spring Harbor Lab; 1 Bungtown Rd; Cold Spring Harbor NY 11724; 516-367-8835/6818; 516-367-8369 (fax); timmerma@cshl.org

Ting, Yu-Chen; Biology, Boston College; Chestnut Hill 67; Boston MA 02167; 617-552-2736; 617-552-2011 (fax); tingy@bc.edu Tingey, Scott V.; Du Pont Company; DTP Suite 200, PO Box 6104; 1 Innovation Way; Newark DE 19714-6104; 302-631-2602; Scott V.Tingey@usa.dupont.com Tomas, Adriana; Pioneer Hi-Bred International; 7300 NW 62d Ave; PO Box 1004; Johnston IA 50131-1004; 515-253-2116; 515-253-2149 (fax); tomasa@phibred.com Tomes, Dwight T.; Pioneer Hi-Bred Intl; 7300 NW 62nd Ave; P.O. Box 1004; Johnston IA 50131-1004; 515-270-3646; 515-270-3444 (fax); tomesd@phibred.com Tonelli, Chiara; University of Milan; Dept. of Genetics & Microbiology; Via Celoria 26; Milano 20133; ITALY; 39-02-26605210; 39-02-2664551 (fax); chiara.tonelli@unimi.it

Tossberg, John; Pioneer Hi-Bred Internat Inc; Reid Research Center; 7300 NW 62nd Ave, PO Box 1004; Johnston IA 50131-1004; 515-270-3645; 515-253-2149 (fax) Tracy, William; Department of Agronomy; 1575 Linden Drive; University of Wisconsin; Madison WI 53706; 608-262-2587; 608-262-5217 (fax); wftracy@facstaff.wisc.edu

Trimnell, Mary; 7301 NW 62nd Ave; Pioneer Hi-Bred International; PO Box 85; Johnston IA 50131-0085; 515-270-3297; 515-270-3667 (fax); trimnellm@phibred.com Troxell, Cynthia; Dept. MCD Biology; Campus Box 347; University of Colorado; Boulder CO 80309-0347; 303-492-8534; 303-492-7744 (fax); troxell@beagle.colorado.edu

Troyer, A. Forrest; Corn Breeder; 611 Joanne Ln; DeKalb IL 60115-1862; 815-758-4375; 630-801-2345 (fax) Tsai, Charles; Dept Bot; Natl Taiwan Univ; Taipei 10764; TAIWAN Tu, Zeng-Ping; Guangdong Acad. of Agric. Sciences; Rice Research Institute; Wushan, Guangzhou; Guangdong 510640; CHINA Tuerck, Jutta; Advanced Technol (cambridge) Ltd; 210 Science Park; Cambridge CB4 0WA; UNITED KINGDOM; 44-1223-420 284; 44-1223-423 448 (fax);

Tuerck, Jutta; Advanced Technol (cambridge) Ltd; 210 Science Park; Cambridge CB4 0WA; UNITED KINGDOM; 44-1223-420 284; 44-1223-423 448 (fax); atc.biotech@dial.pipex.com Tuttle, Ann Marie; CIBA-Geigy Corp; PO Box 12257; Research Triangle Park NC 27709-2257 Tyers, Randall; Plant Biol Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-7948; 510-642-4995 (fax); tyersome@nature.berkeley.edu Tyrnov, Valery; Genetics Dept; 83 Astrakhanskaya Str; Saratov State University; Saratov 410026; RUSSIA; (845-2)240446 (fax); tyrnov.bi.sgu@oda.ssu.runnet.ru Uhr, David V.; Northrup King Co.; 340 Southside Drive; Henderson KY 42420; (502)827-5787; (502)827-5703 (fax) Ujiie, Katsuhiro; HOKUREN Naganuma Res. Stn.; Minami-2, Higashi-9; Naganuma-Cho, Yuubari-Gun; Hokkaido 069-1316; JAPAN; 01238-8-3330; 01238-8-3200 (fax) Ulirich, Valentin; P.O. Box 451; Morgantown WV 26506; 304-292-5262 Valdez, Gregorio; Lehman College CUNY; Biology Dept c/o Elli Wurtzel; 250 Bedford Park Blvd West; Bronx NY 10468 Vallejos, Ruben H.; CEFOBI; Univ Nac de Rosano; Suipacha 531; 2000 Rosario; ARGENTINA; 54-41-371955; 54-41-370044 (fax); RNCEFOBI@ARCRIDE.EDU.AR Van Heeckeren, Wim; Inst Molec Biol; Univ of Oregon; Eugene OR 97403-1229; wim@morel.uoregon.edu Van Montagu, M.; Lab Genetics; K L Ledeganckstr 35; B-9000 Gent; BELGIUM; 32-9-264.51.70; 32-9-264.53.49 (fax); mamon@gengenp.rug.ac.be Van Schaik, N.; Dept Genetics; L Ledeganckstr 35; B-9000 Gent; BELGIUM; 32-9-264.51.70; 32-9-264.53.49 (fax); mamon@gengenp.rug.ac.be Van Schaik, N.; Dept Genetics; K L Ledeganckstr 35; B-9000 Gent; BELGIUM; 32-9-264.51.70; 32-9-264.53.49 (fax); tvantoai@magnus.acs.ohio-state.edu Vandorsilice, Olin L.; Vandersilice Enterprises; Lake Viking, 106 Mooney Drive; Gallatin MO 64640-6340; 660-663-2946 Vantoai, Tara T.; USDA Agronomy; 590 Woody Hayes Dr; Columbus OH 43210; 614-292-9806; 614-292-9448 (fax); tvantoai@magnus.acs.ohio-state.edu Varagona, Rita; Monsanto Co; O3G; 800 N. Lindbergh Bivd; St. Louis MO 63167; (314) 634-2007; RITA.J VARAGO

ikv@gnv.ifas.ufl.edu

Vega, Shifra; Dept Biol; Plant Sci Inst; Univ of Pennsylvania; Philadelphia PA 19104-6018

Veit, Bruce; Dept Biol, riant oct hist, only of entrsynama, rindedeptine PA 19/45/01 Veit, Bruce; Dept Biol, riant oct hist, only of entrsynama, rindedeptine PA 19/45/01 Veldboom, Lance; PO Box 839; Holden's Foundation Seeds, LL.C.; Williamsburg IA 52361; 319-668-1100; 319-668-2453 (fax); lance@holdens.com Vergne, Phillippe; RCAP; ENS-Lyon; 46 Allee d'Italie; 69364 Lyon cedex 07; FRANCE; 33/72-72-86-08; 33/72 72 86 00 (fax); Philippe.Vergne@ens-lyon.fr Vermerris, Wilfred; Forest Biotechnology Group; 6113 Jordan Hall; North Carolina State Univ; Raleigh NC 27695-8008; 919-515-7799; 919-515-7801 (fax); weverme1@unity.ncsu.edu

weverne1@unity.ncsu.edu Vidakovic, Mirceta; Maize Research Institute; Slobodana Bajica 1; 11080 Zemun; Belgrade; YUGOSLAVIA; 381-11-617434; 381-11-197890 (fax); djelovac@eunet.yu Vierling, Richard; Indiana Crop Improvement; 3510 U.S. 52 South; Lafayette IN 47905; 317-474-3494; 317-474-8959 (fax); Vierling@purdue.edu Vincent, Leszek; Curtis Hall; University of Missouri; Columbia MO 65211-7020; 573-882-2674; 573-884-7850 (fax); leszek@missouri.edu Violic, Alejandro D.; Vital Apoquindo 180; Santiago (Las Condes); CHILE; (562)229-0685; (562)735-5892 (fax) Viotti, Angelo; Ist Biosintesi Vegetali; Via Bassini 15; 20133 Milano; ITALY; 39 2 706.001.70/309.85; 39 2 2362946 (fax); aviotti@icm.mi.cnr.it Vodkin, Lila Ott; 384 ERML, Dept Crop Sci; Univ Illinois; 1201 W. Gregory; Urbana IL 61801; 217-244-6147; 217-333-9817 (fax); I-vodkin@uiuc.edu Voelker, Rodger; Inst Molec Bioi; Univ of Oregon; Eugene OR 97403 Vogel, Julie; DuPont Agric Biotechnol; DTP Suite 200; 1 Innovation Way, PO Box 6104; Newark DE 19714-6104; 302-631-2630; 302-631-2607 (fax); iulii m vogel@usa.dupont.com

Vogel, Julie; DuPont Agric Biotechnol; DTP Suite 200; 1 Innovation Way, PO Box 6104; Newark DE 19/14-b104; 302-b31-2030, 302-b31-2030, julie.m.vogel@usa.dupont.com
Vollbrecht, Erik; Cold Spring Harbor Lab; 1 Bungtown Rd; PO Box 100; Cold Spring Harbor NY 11724; 516-367-8836; 516-367-8369 (fax); vollbrec@cshl.org
Von Wettstein, D.; Dept Crop Soil Sci, Genet Cell Biol; Washington State Univ; Pullman WA 99164-6420; 509-335-3635; 509-335-8674 (fax); diter@wsu.edu
Waines, J. Giles; Dept of Botany/Plant Sciences; University of California; Riverside CA 92521; 909-787-3706; 909-787-4437 (fax);
Walbot, Virginia; Dept Biol Sci; 385 Serra Mall; Stanford Univ; Stanford CA 94305-5020; 650-723-2227; 650-725-8221 (fax); walbot@stanford.edu
Walden, D. B.; Dept of Plant Sciences; Univ of Western Ontario; London N6A 5B7; CANADA; 519-661-3103; 519-661-3935 (fax)
Walker, Elsbeth L.; Biology Dept; Morrill Science Center; Univ of Mass, Amherst; Amherst MA 01003; 413-545-0861; 413-545-3243 (fax); ewalker@bio.umass.edu
Walker, John; Biol Sci; 308 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-3583; 573-882-0123 (fax); jcw@biosci.mbp.missouri.edu
Walker, Nigel; Plant Biol Dept; 111 Koshland Hall; UC Berkeley; Berkeley CA 94720-3102; 510-642-8058; 510-642-4995 (fax); ingel@nature.berkeley.edu
Walkon, Jonathan; DOE Plant Research Lab; Michigan State University; East Lansing MI 48824; 517-353-4885; 517-353-9168 (fax); walton@pilot.msu.edu
Walton, Mark; Linkage Genetics; 2411 South 1070 West; Suite B; Sait Lake City UT 84119; 435-975-1188; 435-975-1244 (fax); waltonm@linkgene.com
Wan, Yuechun; Monsanto Agricultural Group; 700 N Chesterfield Pkwy - GG4H; St. Louis MO 63198; 314-537-6734; yuechun.wan@monsanto.com

Wan, Yuechun; Monsanto Agricultural Group; 700 N Chesterfield Pkwy - GG4H; St. Louis MO 63198; 314-537-6734; yuechun.wan@monsanto.com Wang, Andrew S.; Novartis Seeds Inc; 317 330th Street; Stanton MN 55018-4308; 507-663-7658; 507-645-7519 (fax) Wang, Bin; Academia Sinica; Institute of Genetics; Beijing 100101; CHINA; 8610-64870491; 8610-64873428 (fax); bwang@ss10.igtp.ac.cn Wang, Guo-Ying; China Agric Univ Dept Biotech; Yuanmingyuan West Road No. 2; Beijing 100094; CHINA; (010)62892577; (010)62582332 (fax);

wanggy@cpy.cjfh.ac.cn
Wang, Qinnan; National Natural Science Foundation; Dept. of Life Science; Beijing 100083; CHINA
Wang, Qinnan; National Natural Science Foundation; Dept. of Life Science; Beijing 100083; CHINA
Wang, Ya-hui; Academia Sinica; Inst. of Cell Biol.; 320 Yo-Yang Road; Shanghai 200031; CHINA
Warner, Todd; Northrup King Co; 317 330th St; Stanton MN 55018-4308
Warren, Jana; Pioneer Hi-Bred Internat Inc; 7300 NW 62nd Ave; PO Box 1004; Johnston IA 50131-1004; 515-270-4390; 515-270-4312 (fax); warrenjl@phibred.com
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 708-304-2135; 708-304-2166 (fax)
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 708-304-2135; 708-304-2166 (fax)
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 708-304-2135; 708-304-2166 (fax)
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 708-304-2166 (fax)
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 708-304-2166 (fax)
Weaver, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 708-304-2166 (fax)
Weever, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 708-304-2166 (fax)
Weever, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 847-304-2149 (fax)
Weever, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 708-304-2166 (fax)
Weever, Sam; Quaker Oats Company; 617 West Main St.; Barrington IL 60010-4113; 847-304-2135; 847-304-2149 (fax)
Webb, Craig; Dept Plant Pathol; 4024 Throckmorton Plant Sci Ctr; Kansas State Univ; Manhattan KS 66506-5502; 913-532-2328; 913-532-5692 (fax); webbcr@plantpath.pp.ksu.edu
Weber, Gerd; Institut fur Pflanzenzuchtung; Universitat Hohenhei

Webergediantoriemented Weck, Edward A.; 901 College; Northfield MN 55057; 507-663-1244; eweck@microassist.com Weil, Cliff; Dept. of Biological Sciences; University of Idaho, 229 Gibb; Moscow ID 83844-3051; (208)885-6370; (208)885-7905 (fax); cweil@uidaho.edu Wen, Tsui-Jung; B422 Agronomy Hall; Iowa State University; Ames IA 50011; 515-294-1659; 515-294-2299 (fax); TJWEN@IASTATE.EDU
Wenxiong, Lin; Fujian Agricultural College; Dept. of Agronomy; Jingshan, Fuzhou; Fujian 350002; CHINA

Werr, Wolfgang; Institut Fur Entwicklungsbiologie; Universitat zu Koln; Gyrhofstr 17; 50931 Koln 41; GERMANY; 49 221 470 2619; 49 221 470 5164 (fax); wwerr@biolan.uni-koeln.de

Wessler, Sue; University of Georgia; Dept of Genetics; Life Sciences Bldg; Athens GA 30602; 706-542-1870; 706-542-3910 (fax); sue@dogwood.botany.uga.edu West, Dennis R.; Dept Plant and Soil Sci; Univ of Tennessee; Knoxville TN 37901-1071; 423-974-8826; 423-974-7997 (fax); DWEST3@UTK.EDU Westhoff, Peter; Ins. Ent. Mol. Bio. Pflanzen; Heinrich-Heine-Univ Dusseldorf; D-40225 Dusseldorf; GERMANY; 49-211-81-12338; 49-211-81-14871 (fax); West@Uni-

Duesseldorf.de

Duesseldorf.de Wetzel, Carolyn; Dept of Botany; Bessey Hall; Ames IA 50011; 515-294-7724; 515-294-1337 (fax); cmwetzel@iastate.edu Whalen, Richard; Dept of Biology; South Dakota State Univ; Brookings SD 57007; 605-688-4553; 605-688-6677 (fax); Richard_Whalen@sdstate.edu Whitwood, W.; Seneca hybrids/SVS; 5271 Flat Street; Hall NY 14463; 716-526-5879; 716-526-5350 (fax) Widholm, Jack M.; Crop Sciences; Univ of Illinois; ERML, 1201 W. Gregory; Urbana IL 61801; 217-333-9462; 217-333-4777 (fax); Widholm@UIUC.EDU Widstrom, Neil W.; Coastal Plain Exp Sta; PO Box 748; Tilton GA 31793; 912-387-2341; 912-387-2321 (fax); nwidstro@tilton.cpes.peachnet.edu Wienand, Udo; Inst. Allge. Bot.; Univ Hamburg; Pflanzen, AMP I, Ohnhorststrasse 18; D-22609 Hamburg; GERMANY; (49)40 822 82 501; (49)40 882 82 503 (fax); wienand@nw01.uni-hamburg.de Wilkes, H. Garrison; Biology-Dept.; Univ of Mass/Boston; 100 Morrissey Blvd; Boston MA 02125-3393; 617-287-6600; 617-287-6650 (fax); WILKES@UMBSKY.CC.UMB.EDU Willcox, Martha; CIMMYT; Apartado Postal 6-641; Mexico, D.F. 06600; MEXICO; 52(5)726-9091 ext.1128; 52(5)726-7559 (fax) Williams, Claire G.; Texas A&M Univ; Dept of Soil & Crop Sci MS-2135; College Station TX 77843-2135; 409-862-3745; 409-845-6049 (fax); claire williams@tamu.edu

claire_williams@tamu.edu

Williams, Mark; DuPont de Nemours & Co Agric Biotech; Stine-Haskell Res Cent 210N/253; 1090 Elkton Rd; Newark DE 19714-0030; 302-366-5102; 302-451-4832 (fax); mark.e.williams@usa.dupont.com

(fax); mark e.williams@usa.dupont.com Williams, Robert E.; PO Box 294; Pittsfield IL 62363; 217-285-2530 Williams, Rosalind; Plant Biology Dept; 111 Koshland Hali; UC Berkeley; Berkeley CA 94720 Williams, W. Paul; USDA-ARS-CHPRRU; Box 9555; Miss. State MS 39762; 601-325-2735; 601-325-8441 (fax); pwilliams@dorman.msstate.edu Willman, Mark R.; Hunt-Wesson Inc; 463 U.S. Hwy. 30 East; Valparaiso IN 46383; 219-464-9602x233; 219-462-6293 (fax); mwillman@hwfoods.com Wing, Rod; Clemson Univ. Genomics Inst.; 100 Jordan Hall; Clemson University; Clemson SC 29634-5727; 864-656-7288; 864-656-4293 (fax); rwing@clemson.edu Winkler, Rodney G.; Genomica Corporation; 4001 Discovery Drive; Suite 130; Boulder CO 80303; 303-544-4025; 303-402-9877 (fax); winkler@genomica.com Winter-Vann, Ann Marie; CIBA Ag Biotech; PO Box 12257; Research Triangle Park NC 27709-2257 Wise, Roger; USDA-ARS, 351 Bessey Hall; Dept. Plant Pathology; Iowa State Univ.; Ames IA 50011-1020; 515-294-9756; 515-294-9420 (fax); rwise@iastate.edu Wolfe, Kenneth; Dept. of Genetics; University of Dublin; Trinity College; Dublin 2; IRELAND; 353-1-702-1253; 353-1-679-8558 (fax); KHWOLFE@VAX1.TCD.IE Wood, Claudine; 2667 Parker St; Berkeley CA 94704 Woodman, Wendy: Deet, of Argonomy: Owa State Univ.; Ames IA 50011: 515-294-3163 (fax): wwoodma@iastate.edu

Wole, Kennetin; Dept. of Genetics; University of Dubin; Innity College; Dubin 2; IRELAND; 353-1-7/2-1253; 353-1-679-8588 (fax); KHWOLFE@VAX1.1CD.IE
Woodman, Wendy; Dept. of Agronomy; Iowa State Univ.; Ames IA 50011; 515-294-3635; 515-294-3163 (fax); wlwoodma@iastate.edu
Woodman, Wendy; Agronomy Dept; Waters Hall; Univ of Missouri; Columbia MO 65211; 573-882-1168; woodward@psu.missouri.edu
Woody, Agronomy Dept; Waters Hall; Univ of Missouri; Columbia MO 65211; 573-882-4871; Iwoody@biosci.mbp.missouri.edu
Wrody, Laura; Biol Sci; 110 Tucker Hall; Univ of Missouri; Columbia MO 65211; 573-882-4871; Iwoody@biosci.mbp.missouri.edu
Wright, James; Pioneer Hi-Bred Intl; PO Box 245; Wilson NC 27894-0245
Wright, Scott; Linkage Genetics; 1515 West 2200 South, Suite C; Salt Lake City UT 84119; 435-975-1244 (fax)
Wrobel, Russell; Dept Veg Crops; University of California-Davis; Davis CA 95616; riwrobel@ucdavis.edu
Wurtzel, Eleanore; Dept Biol Sci; Davis Hall, Lehman College; City Univ New York; Bronx NY 10468; 718-960-4994, -8643; 718-960-8236 (fax); etwic@cunyvm.cuny.edu
Xia, Zhen-Ac; Academia Sinica; Shanghai Inst. of Plant Physiol; 300 Fonglin Road; Shanghai 200433; CHINA
Xie, You-Ju; College of Biology; China Agricultural University; Beijing 100094; CHINA; 86 (10) 62631895; 0086-1-2582332 (fax); daimin@public3.bta.net.cn
Xiong, Chennin; China National Rice Research Institute; Ti Yu Chang Road 171; Hangzhou; Zheijang 310006; CHINA
Xu, Wenwei; Texas A&M Univ; Agric Res and EXt Center; Route 3, Box 219; Lubbock TX 79401; 806-746-6528 (fax); we-xu@tamu.edu
Xu, Xiaojie; B420 Agronomy Hall; Iowa State Univ; Ames IA 50011
Xu, Yun-Bi; Zheijang Agricultural University: Dept. of Agronomy; Hangzhou; Zheijang 310029; CHINA
Xu, Zun-Bi; Zheijang Agricultural University: Dept. of Agronomy; Hangzhou; Zheijang 310029; CHINA
Xu, Zun-Bi; Zheigang Agricultural University: Dept. of Agronomy; H

Yang, Hong; Chinese Academy of Agric. Sciences; Biotech. Research Centre; Beijing 100081; CHINA Yang, Jin Shui; Fudan University; Institute of Genetics; Shanghai 200433; CHINA Yang, Ren-Cui; Fujian Agricultural College; Heterosis Utilization Lab.; Chinmen, Fuzhou; Fujian 350002; CHINA Yang, Yuesheng; South China Agricultural University; Experimental Center; Guangzhou; Guangdong 510642; CHINA Yang, Masahiro; Rice Genome Research Program; Nat. Inst. Agrobiol. Resources; 2-1-2, Kannondai; Tsukuba, Ibaraki 305; JAPAN; 81-298-38-7441,2199; 81-298-38-7468,2302 (fax); myan@abr.affrc.go.jp Yatou, Osamu; Lab Rice Genet Resources; Dept Rice Research; Hokuriku Agric Exp Stn; 1-2-1 Inada, Joetsu-shi, Niigata-ken 943-01; JAPAN; 81-255-26-3304; 81-255-

Yatou, Osamu; Lab Rice Genet Resources; Dept Rice Research; Hokuriku Agric Exp Stn; 1-2-1 Inada, Joetsu-shi, Niigata-ken 943-01; JAPAN; 81-255-26-3304; 81-255-24-8578 (fax); yatou@inada.affrc.go.jp
Ye, Ke-Nan; Zhongsan University; Biotechnology Research Centre; Guangzhou 510642; CHINA
Ye, Sheng-Yu; Shanghai Inst. of Biochem; 320 Yue Yang Road; Shanghai 200031; CHINA
Yi, Bu-Young; Nat Agric Sci & Technol Inst; RDA; SEO DUN DONG 249; Suwon 441-707; KOREA; 82-331-296-9436; 82-331-294-1072 (fax)
Yoganathan, AruImolee; Department of Biology; Lehman College/CUNY; Bedford Park Blvd. West; Bronx NY 10468; 212-960-8235; 212-960-8227 (fax); ARYLC@CUNYVM.CUNY.EDU
Yoon, Gao; Liaoning Academy of Agric. Sciences; Rice Research Institute; Sujiatun; Shenyang 110101; CHINA
Yoon, Gao; Liaoning Academy of Agric. Sciences; IAAE, Dept. of Biotechnology; P.O. Box 5109; Beijing 100094; CHINA
You, Chong-biao; Chinese Academy of Agric. Sciences; IAAE, Dept. of Biotechnology; P.O. Box 5109; Beijing 100094; CHINA
Young, Todd; Biochemistry Dept; UC Riverside; Riverside CA 92521-0129; 909-787-3580; 909-787-4437 (fax); teyoung@citrus.ucr.edu
Yu, Jia; Dept. Biological Science; Lehman College; 250 Bedford Park Blvd. West; Bronx NY 10468; 212-960-8236 (fax)
Yu, Jia; Dept. Biological Science; Lehman College; 250 Bedford Park Blvd. West; Bronx NY 10468; 212-960-8236 (fax)
Yu, Ji; China National Rice Research Institute; Library; Tiyuchang Road No. 171, Hangzhou; Zhejiang 310006; CHINA
Yue, Yong Gang; Dow Agrosciences; Building 306 / C2; 9330 Zionsville Rd; Indianapolis IN 46268; 317-337-3861; ygue@dowagro.com
Zabala, Gracia; Plant Biol/265 Morrill Hall; Univ Illinois; 505 S. Goodwin Avenue; Urbana IL 61801; 217-333-3736; 217-244-7246 (fax); Gracia.Zabala@Oms1.Life.uiuc.edu
Zavalishina, Alexandra; Genetics Dept; Saratov State University; 83, Astrakhanskaya St.; 410026, Saratov; RUSSIA; 845-2-240446 (fax);
</ul

Zavalishina, Alexandra; Genetics Dept; Saratov State University; 83, Astrakhanskaya St.; 410026, Saratov; RUSSIA; 845-2-240446 (fax); zavalish.bi.sgu@oda.ssu.runnet.ru

zavaisn.bi.sgu@oda.ssu.runnet.ru Zehr, Brent; Maharashtra Hyb Seeds Co; Rehsam Bhavan, 4th Floor; 78, Veer Nariman Road; Mumbai 400020; INDIA; mahycord@bom2.vsnl.net.in Zeng, Mengqian; Institute of Genetics; Academia Sinica; 3 Datun Rd.; 100101 Beijing; CHINA; 64857495; 64854896 (fax); mengzeng@public.fhnet.cn.net Zhang, Deyu; Jiangsu Academy of Agricultural Sci.; Inst. of Genet. and Physiol.; Nanjing 210014; CHINA Zhang, Fan; Monsanto U4C; 800 North Lindbergh; St. Louis MO 63167; 314-694-8415; 314-694-8275 (fax); fan.zhang@monsanto.com Zhang, Gui-Quang; South China Agricultural University; Dept. of Agronomy; Guangzhou 510642; CHINA Zhang, Jianbo; 2288 Molecular Biology Building; Iowa State University; Ames IA 50011; (515)294-2922; (515)294-0345 (fax); jzhang@iastate.edu Zhang, Peifen; 2288 Molecular Biology Bldg; Iowa State University; Ames IA 50011; 515-294-2922; 515-294-0345 (fax); zpf@iastate.edu

Zhang, Qifa; Huazhong Agricultural University; Nat Key Lab Crop Genet Imp; Wuhan 430070; CHINA; 86-27-7393392; 86-27-7393392 (fax); qifazh@public.wh.hb.cn Zhao, Qiquan; Zhejiang Agricultural University; Dept. of Tea Science; Hangzhou; Zhejiang 32100; CHINA Zhao, Zuo-Yu; Biotechnology Research; Pioneer Hi-Bred Int'l; 7300 NW 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3644; 515-270-3444 (fax);

Zhao, Zuo-Yu; Biotechnology Research; Pioneer Hi-Bred Int'l; 7300 NW 62nd Ave. P.O. Box 1004; Johnston IA 50131-1004; 515-270-3644; 515-270-3444 (fax); zhaoz@phibred.com
 Zhen, Zhu; Academia Sinica; Institute of Genetics; Beijing 100101; CHINA
 Zheng, Kangle; China National Rice Research Institute; 171 Ti Yu Chang Road; Hangzhou 310006; CHINA
 Zheng, Yin-Zhou; Div Biol Sci; 117 Tucker Hall; University of Missouri; Columbia MO 65211; 573-882-4871; 573-882-0123 (fax); yzheng@biosci.mbp.missouri.edu
 Zhong, Zhen-Ping; Fujian Agricultural College; Dept. of Agronomy; Fuzhou; Fujian 350002; CHINA
 Zhong, Hongsheng; Institute of Crop Breeding and Cultiv; Chinese Acad Agric Sci; 30, Bai Shi Qiao Lu; Beijing 100081; CHINA; 86-1-8351731; 86-1-8316545 (fax); dyhzhs@public3.bta.net.cn
 Dhou, Kaida; Sichuan Agricultural University: Rice Research Institute; Yaan; Sichuan 625014; CHINA

Zhou, Kaida; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA

Zhou, Kaida; Sichuan Agricultural University; Rice Research Institute; Yaan; Sichuan 625014; CHINA Zhou, Zhaolan; Chinese Academy of Sciences; Institute of Genetics; Group 601; Beijing 100101; CHINA Zhu, Li-Huang; Academia Sinica; Institute of Genetics; Datun Road, Andingmen Wai; Beijing 100101; CHINA; 86-10-62033491; 86-10-64913428 (fax); Ihzhu@igtp.ac.cn Zhu, Xiaoyang; Inst Crop Germplasm Resources; Chinese Academy of Agric Sci; 30 Bai Shi Qiao Road; Beijing, 100081; CHINA; 86-10-62186647; 86-10-62174142 (fax) Zhu, Zhug-Guo; Wuhan University; Genetics Dept; Wuchang; Hubei 430072; CHINA; 27-7822712-4560; 27-7812661 (fax) Zhu, Z. P.; Shanghai Inst. of Plant Physiol.; 300 Fengling Road; Shanghai 200032; CHINA Zimmer, Elizabeth; Lab of Molecular Systematics MRC 534; Support Ctr. Nat'l Museum Nat. History; Smithsonian Inst; Washington DC 20560; 301-238-3444x106; 301-288-3059 (fax): zimmer@onyx si edu

238-3059 (fax); zimmer@onyx.si.edu

IV. MAIZE GENETICS COOPERATION STOCK CENTER

Maize Genetics Cooperation • Stock Center

USDA/ARS/MWA - Soybean/Maize Germplasm, Pathology & Genetics Research Unit &

University of Illinois at Urbana/Champaign - Department of Crop Sciences

S-123 Turner Hall 1102 South Goodwin Avenue Urbana, IL 61801-4798 (217) 333-6631 [*phone*] (217) 333-6064 [*fax*] maize@uiuc.edu [*internet*] http://www.uiuc.edu/ph/www/maize [*URL*]

2365 seed samples have been supplied in response to 271 requests, for 1999. Of these, a total of 74 requests were received from 21 foreign countries. Approximately 85% of our requests were received by electronic mail or through our order form on the World-Wide Web.

Working backwards, we have been continuing to computerize data from the Stock Center's planting pedigrees. To date, we have entered all planting notes back through 1966, which facilitate pedigree information searches. Also completed are indexes for several reprint collections we hold. Among these are the complete collections of Earl Patterson, George Sprague and Marcus Rhoades.

We have added many new 'Phenotype Only' stocks. These are stocks that have been donated to the COOP over the years, and have been classified according to their mutant phenotype only. For the most part, these stocks have not as yet been allele tested, nor has their gene been located to a chromosome arm. While we expect that most of these will represent new alleles of known loci, some will represent unique, as yet undescribed loci. Over the past few years, some mutants in this class have been mapped and/or allele tested and where appropriate, the now characterized mutant stock was added to our main catalog. We are now listing all of these mutants to give cooperators that are interested in specific traits, easier access to these mutants.

Approximately 5 acres of nursery were grown this summer at the Crop Sciences Research & Education Center located at the University of Illinois. Optimal spring growing conditions were followed by a hot summer, but with additional water supplied by irrigation, we obtained good increases of most stocks grown this year

Special plantings were made of several categories of stocks:

1. Approximately 1.5 acres was devoted to the vast mutant collection of Gerry Neuffer with special attention also given to the collection of mutants that we have obtained from Donald Robertson. We have made good progress in increasing the Neuffer collection, and have increased most of the Robertson collection. These stocks will be placed in the 'Phenotype Only' category of stocks created last year.

2. Plantings were also made from donated stocks from the collections of Don Auger (translocated *Ac* lines), Ed Coe (various genetic stocks), Jerry Kermicle (*R1* alleles), Michael McMullen (Brink pericarp color collection), Donald Miles (high chlorophyll fluorescence mutants), Robert Brawn (dwarf mutants), and others. We expect to receive additional accessions of stocks from maize geneticists within the upcoming year.

3. We conducted allelism tests of several categories of mutants with similar phenotype or chromosome location. We found additional alleles of *glossy1*, *pink scutellem1*, *ramosa1*, *terminal ear1*, *virescent1*, *white3*, *yellow endosperm1*, and *yellow endosperm8*. In this manner, we hope to move stocks from our vast collection of unplaced uncharacterized mutants and integrate them into the main collection.

4. We conducted linkage tests of several mutants that had been placed to chromosome arm using B-A translocations. More precise locations were determined for *brown midrib3*, *inhibitor of r1*, and *reverse germ orientation2*.

5. Approximately 1 acre each year is devoted to the propagation of the large collection of A-A translocation stocks. Additional linkage tests were conducted on the *Wx1* and *waxy1*-linked A-A translocations with results presented elsewhere in this edition. We can provide good sources and complete pedigree information on stocks that were previously found not to carry the correct translocated chromosomes. Additional translocation stocks will be tested as time allows.

We continue to grow a winter nursery of 0.5 acres at the Illinois Crop Improvement Association's facilities in Juana Díaz, Puerto Rico. We had an excellent winter crop last year, and despite the passage of Hurricane Lenny over Puerto Rico, our crop this year looks as good if not better. We plan to continue growing our winter nurseries at this location.

We hired an additional Research Specialist who is responsible for the new stocks generated by the NSF project "Maize Gene Discovery, Sequencing and Phenotypic Analysis", in which we are involved along with Virginia Walbot and others in the maize community. We anticipate that this and other projects recently funded by the NSF Plant Genome Program will greatly enhance our collection along with greatly increasing our understanding of maize as a biological organism.

Marty Sachs	Philip Stinard	Janet Day Jackson		
Director	Curator	Senior Research Specialist		

Shane Zimmerman Research Specialist

99

CATALOG OF STOCKS

CHROMOSOME 1 MARKER

101A sr1 zb4 p1-ww 101B sr1 P1-wr 101C sr1 p1-ww 101D sr1 P1-rr 101F sr1 ts2 P1-rr 102A Ws4-N1589 102D Blh1-N1593 102F ms28 103D vp5 103DA vp5-DR3076 103DB vp5-86GN4 103DC vp5-86GN3 103DD vp5-86GN6 103DE vp5-86GN11 103DF vp5-Mumm#1 103DG vp5-N81 103E zb4 ms17 p1-ww 103E 204 ms17 p 104A Ts3 104F ms*-6034 104G ms*-6044 105A zb4 p1-ww 105B zb4 P1-wr 105C zb4 p1-ww br1 105E ms17 P1-wr 105F ms17 p1-ww 106B ts2 P1-rr 107A P1-cr 107B P1-rr 107C P1-rw 107D P1-cw 107E P1-mm 107F P1-vv::Ac 107G P1-or 107H p1-ww 109A gs1-Pl228173 109B gs1-Pl262495 109D P1-rr ad1 bm2 109E P1-wr br1 f1 110A P1-wr an1 Kn1 bm2 110D P1-wr an1 bm2 110E P1-wr ad1 bm2 110E P1-wr ad1 bm2 110F P1-wr br1 Vg1 110H P1-wr br1 f1 bm2 110K P1-wr br1 111B hcf3-N846B 111C hcf3-N1242B 111D hcf44-N1278B 111F Les20-N2457 111G rs2 111H Les5-N1449 112B p1-ww br1 f1 bm2 112E as1 112H p1-ww br1 1121 p1-ww br1 gs1 bm2 113B rd1 113BA rd1-Wasnok 113C br1 f1 113E br1 f1 Kn1 113K hm1; hm2 113L Hm1; hm2 114C br1 bm2 114D Vg1 114F br2 hm1; Hm2 114G br2 hm1; hm2 115C v22-8983 115CA v22-055-4 115J bz2-m::Ds; A1 A2 C1 C2 Pr1 R1 116A bz2-m::Ds; A1 A2 Ac C1 C2 Pr1 R1 116C an1 bm2 116D def(an1..bz2)-6923; A1 A2 Bz1 C1 C2 Pr1 R1 116G an1 116GA an1-93W1189 116l bz2 gs1 bm2 Ts6; A1 A2 Bz1 C1 C2 R1 117A br2 117D tb1

117DA tb1-8963 117E Kn1 118B Kn1 bm2 118C lw1 118CA lw1-3108 118CB lw1-6474 118J Adh1-3F1124r53 18K Adh1-1S5657; Adh2-33 118L Adh1-3F1124::Mu3 118M Adh1-3F1124r17 118N Adh1-IL14H; su1 1180 Adh1-Cm 118P Adh1-FCm 118Q Adh1-Ct 119A Adh1-1S; Adh2-1P 119B vp8 119C gs1 119D gs1 bm2 119E Ts6 119F bm2 119F bm2 119H Adh1-FkF(gamma)25; Adh2-N 119J Adh1-Fm335::Ds1 119K Adh1-Fm335RV1 119L Adh1-2F11::Ds2 119M Adh1-1F725 120A id1 200P acc2 8147 120B nec2-8147 120C ms9 120CA ms9-6032 120CB ms9-6037 120CC ms9-6042 120D ms12 120E v22-055-4 bm2 120F Mpl1-Sisco 120G Mpl1-Freeling 121A ms14 121AA ms14-6005 121B br2-mi8043 121C D8 121D lls1 121DA IIs1-N501B 121E ty*-8446 121G ct2 121GA ct2-rd3 124A v*-5688 124B j*-5828 124C w*-8345 124CA w*-013-3 124CB w*-8245 124D v*-5588 124E w*-018-3 124F w*-4791 124G w*-6577 124G w -6577 124H w*-8054 124I v*-032-3 124J v*-8943 125A Les2-N845A 125B Mpl1-Jenkins 125C hcf13-N1097B 125D hcf41-N1275C 125E hcf50-N1481 125F hcf2-N506C 125G hcf31-N1268B 126A bz2 gs1 bm2; A1 A2 Bz1 C1 C2 R1 126B id1-N2286A 126C dek1-N928A 126D dek1-N971 126E dek32-N1322A 126F o13 126H P1-vv::Ac bz2-m::Ds 1261 P1-vv::Ac 126J P1-ww-1112 126K P1-ovov-1114 126L P1-rr-4B2 126M P1-vv-5145 126N dek1-N1348 1260 dek1-N1394 126P dek1-N1401 127A bz2 zb7-N101 bm2

127B dek1-N792 127C dek2-N1315A 127D dek22-N1113A 127F f1 127F Msc1-N791A 127G Tlr1-N1590 127l gt1 128A ij2-N8 128B I16-N515 128C |17-N544 128D pg15-N340B 128E pg16-N219 128F v25-N17 128G pv2-N521A 128H spc2-N262A 129A w18-N495A 129AA w18-571C 129B wlu5-N266A 129C zb7-N101 129D emp1-R 129E ptd1-MS1568 129F dek*-MS2115 129G dek*-MS6214 129G dek'-MS6214 130A o10-N1356 130B cp3-N888A 130BA cp3-N888A; mn4-N888C 130C id1-NA972 130D dek1-PB388 6502A P1-ww-4Co63 6502C P1-ovov-CFS-29 6502D P1-rr(11)-CFS-33 6502E P1-rr(10)-CFS-33 6502E P1-rr(4-5)-CFS-47 6502G P1-rr(9)-CFS-53 6502F P1-rr(8-9)-CFS-75 6502K P1-vv-CFS-10 6502K P1-vv-CFS-110 6502N P1-vv-CFS-116 6502N P1-ovov-CFS-124 6502O P1-vv-CFS-138 65020 P1-vv-CFS-138 6502P P1-rr(7)-CFS-140 6502Q P1-vv-CFS-155 6502R P1-vo-cr5-155 6502R P1-o-grained-red-CFS-167 6502S P1-r pale(8)-CFS-181 6502T P1-rr(9)-CFS-186 6502V P1-vv-CFS-245 6502W P1-vv-CFS-246 6502X P1-vv-CFS-249 6502X P1-vv-CFS-249 6502Y P1-vv-CFS-252 6502Z P1-vv-CFS-255 6502ZA P1-vv-CFS-255 6502ZB P1-vv-CFS-256 6502ZB P1-vv-CFS-259 6503A P1-rr(11)-CFS-273 6503C P1-vv-CFS-273 6503C P1-vv-CFS-278 6503E P1-vv-CFS-281 6503F P1-vv-CFS-281 6503F P1-vv-CFS-283 6503H P1-vv-CFS-283 6503H P1-vv-CFS-284 6503I P1-vr-CFS-284 6503H P1-vv-CFS-284 6503I P1-r pale(5)-CFS-285 6503J P1-vv-CFS-286 6503K P1-mm-CFS-286 6503L P1-mm-CFS-287 6503M P1-mm-CFS-289 6503N P1-mm-CFS-290 6503P P1-mm-CFS-291 6503P P1-mm-CFS-294 6503S P1-mm-CFS-294 6503S P1-mm-CFS-297 6503T P1-mm-CFS-301 6503U P1-rw(9)-CFS-302 6503V P1-rr(11)-CFS-303 6503W P1-rr(10)-CFS-305 6503X P1-rr(10)-CFS-315 6503ZA P1-rr(2)-CFS-319 6503ZB P1-rr(8)-CFS-320 6503ZC P1-rr(7)-CFS-321 6504A P1-rw(8)-CFS-324 6504B P1-rw(6-7)-CFS-325

6504C P1-rr(9)-CFS-327 6504D P1-rw(7)-CFS-330 6504E P1-rw(9)-CFS-332 6504F P1-rw(8)-CFS-334 6504G P1-o-grained-red-CFS-335 6504H P1-rw(5-6)-CFS-336 6504I P1-rw(7)-CFS-342 6504J P1-rr(5)-CFS-345 6504K P1-rw(7)-CFS-360 6504M P1-rw(5)-CFS-360 6504M P1-rw(1)-CFS-376 6504O P1-vv-CFS-497 6504Q P1-rr(11)-CFS-548 6504Q P1-rr(11)-CFS-548 CHROMOSOME 2 MARKER 201A mri1-IHO 201B hcf106-Mum1::Mu1; hcf106c 201C hcf106-Mum2::Mu1; hcf106c 201D hcf106-Mum3::Mu1; hcf106c 201F ws3 lg1 gl2 b1 201G sm2-Brawn180 201G sm2-Brawn180 201H sm2-Brawn189 201I sm2-Brawn190 201J sm2-Brawn190 202A Ig1-Pl200299 202B Ig1-Pl20299 202C Ig1-32TaiTaiTaSarga 202C Ig1-32TaiTaiTaSarga 202D Ig1-ZCXGRB 202E Ig1-64-4 203B al1 203BA al1-Brawn 203BA al1-Brawn 203BB al1-y3 203D al1 lg1 203G al1-y3 gl2 204A al1-lty3 205A al1 lg1 gl2 2058 lg1 2058 lg1 2056 lg1 gl2 2056 al1 gl2 B1 206A lg1 gl2 B1 2066 D10-N2428 206D Wrp1-NA1163 206E oro2 206E oro2 207A y11 208B lg1 gl2 B1 sk1 208C lg1 gl2 B1 sk1 v4 208D ig1 gl2 B1 v4 208E lg1 gl2 b1 208H gl2-Salamini 209E lg1 gl2 b1 sk1 209I gl2-Parker's Flint 210E gl2-3050-3 209I gl2-Parker's Flir 210E gl2-3050-3 210F gl2-Pl200291 210G gl2-Pl239114 210H gl2-Pl251009 210I gl2-Pl251009 210J gl2-Pl251930 210K gl2-Pl262474 210L gl2-Pl262493 210M gl2-Pl267186 210N gl2-N718 2100 gl2-N239 2100 gl2-N239 211A lg1 gl2 b1 fl1 211H gl2 wt1 212B lg1 gl2 b1 fl1 v4 212B lg1 gl2 b1 v4 213B lg1 gl2 wt1 213F lg1 B1-v::Bg Ch1 213F lg1 B1-v::Bg Ch1 214A wt1-Pl251939 214B lg1 gl2 B1-v::Bg 214B lg1 b1 gs2 214C d5 214D gl11 B1 214E B1 ts1 214J sk1 214L lg1 gl2 mn1 215A gl14

215B gl11 215C wt1 215CA wt1-N472A 215CB wt1-N666B 215CC wt1-N178C 215D mn1 215E fl1 215EA fl1-o4 215G fl1 v4 215H wt1 gl14 216A fl1 v4 Ch1 216D fl1 w3 216E fl1 v4 w3 216G fl1 v4 w3 Ch1 217A ts1 217B v4 217G v4 Ch1 217H ba2 v4 217I Les10-NA607 217J Les11-N1438 217K Les15-N2007 217L Les18-N2441 217M Les19-N2450 217N cpc1-N2284B 218A w3 218C w3 Ch1 218D Ht1-GE440 218DA Ht1-Ladyfinger 218DB Ht1 218E ba2 218E ba2 218G B1-Peru; A1 A2 C1 C2 r1-r 218GA B1-Peru; A1 A2 C1 C2 R1-r 218H w3-8686 218I w3-86GN12 219A B1-Peru; A1 A2 C1 C2 r1-g 219B b1; A1 A2 C1 C2 r1-g 219C Ch1 219C Ch1 219D Ht1 Ch1 219F B1-Peru; A1 A2 bz2 C1 C2 r1-g 219G B1-Bolivia-706B; A1 A2 C1 C2 r1-g 219H B1-Bolivia; A1 A2 C1 C2 Pl1 -Rhoades Pr1 r1-g 219I B1-I; A1 A2 C1 C2 PI1-Rhoades r1-r 219J B1-I; A1 A2 C1 C2 PI1-Rhoades r1-g 219K B1-S; pl1-McClintock R1-g 219L B1-S; pl1-McClintock R1-r 220A Les1-N843 220B ws3 lg1 gl2; Alien Addition T2-Tripsacum 220D hcf15-N1253A 220F os1 221A gs2 221AA gs2-0229 221C wlv1-N1860 Ch1 221G wlv1-N1860 224B v*-5537 224H whp1; A1 A2 C1 c2 gl1 in1 R1 224I ws3-7752 224J ijmos*-7335 224K glnec*-8495 224L ws3-8949 224M ws3-8991 224N ws3-8945 226A ws3-N2357 226B b1-m1::Ds1; A1 A2 C1 C2 r1-g 226C b1-md2::Ds1; A1 A2 C1 C2 r1-g 226D b1-Pm5; A1 A2 C1 C2 r1-g 226E b1-Perum216; A1 A2 C1 C2 r1-g 227A dek3-N1289 227B dek4-N1024A 227C dek16-N1414 227D dek23-N1428 227E Les4-N1375 2271 nec4-N516B 227K et2-2352 227L et2-91g6290-26 228A 118-N1940 228B spt1-N464 228C ws3-N453A 228CA ws3-N605A

228E B1-Bh 228F ms33-6019 228G ms33-6024 228H ms33-6029 2281 ms33-6038 228J ms33-6041 229A rf3 Ch1 229B v24-N424 229BA v24-N576A 229BB v24-N588A 229BC v24-N350 229C w3 rf3 Ch1 229E emp2-MS1047 229F dek*-MS1365 229G dek*-MS1365 229G dek*-MS4160 229H dek*-MS2159 229J dek*-PIE CHROMOSOME 3 MARKER 301A cr1 301B bif2-N2354 301C spc3-N553C 301D Wi2-N1540 302A d1-6016 302AA d1-N446 302AB d1-N339 302B d1 rt1 302E d1-tall 303A d1 rt1 Lg3-O 303F g2 303FA g2-pg14::1 303FB g2-v19 303FD g2-56-3040-14 303FE g2-59-2097 303FF g2-94-1478 303G g2 d1 304A d1 ys3 304F d1 Lg3-O ys3 304G Lg3-O Rg1 304I d1 h1 305A d1 Lg3-O 305D d1 Rg1 305K d1 cl1; Clm1-4 306D d1 Rg1 ts4 306F ref1-MS1185 307A Sdw2-N1991 307C pm1 308B d1 ts4 308E ra2 308F ra2 Rg1 309A a1-m3::Ds Sh2 309B a1-m1-5718::dSpm 309C a1-m1-5719A1::dSpm 309C a1-m1-5719A1::dSpm 309D a1-m1-5719A1::dSpm; Mod Pr1 309E a1 Sh2; Spm-w 309F a1-m2-8417::dSpm 309G a1-m2(os)-o1 309H a1-m2-7991A-o2 309J a1-m2-7995::dSpm 309J a1-m2-7977B::dSpm 309K a1-m2-8012A-o1 309K a1-m2-8012A-p1 309L a1 Sh2; Spm-s 309M a1-m1-5719A1::dSpm sh2 309N a1-m2-7995B 309O a1-m1-5996-4::dSpm 309P a1-m1-5719A1::dSpm; Spm-i 309Q a1-m5::Spm-w; Spm-s 309S a1-m2-8411A::Spm-w Sh2 309T a1-m2-7981B6::Spm-w 309U a1-m2-8409::Spm-i 309V a1-m5::Spm-w Sh2 309W a1-m2-8011::Spm-w Sh2 309X a1 Sh2; Spm-w-8745 309Y a1 Sh2; Spm-i 309Z a1-m1-5720-o2 310C ra2 lg2 310D Cg1 311A cl1 311AA cl1-N2 311B cl1; Clm1-2 311BA cl1-7716; Clm1-2

311C cl1: Clm1-3 311D cl1-p; Clm1-4 311E rt1 311F ys3 311G Lg3-O ys3 312B Les17-N2345 312D Lg3-O 312G brn1-R 312H g2 brn1-R 312l brn1-R cr1 312J brn1-R ra2 lg2 312K brn1-Nelson 312L brn1-3071 312M ms23 313A gl6 313AA gl6-gl7 313AB gl6-N672B 313D ms3 313DA ms3-6008 313DB ms3-6009 313DC ms3-6043 313DD ms3-6020 314A gl6 lg2 A1; A2 C1 C2 R1 314C gl6 lg2 a1-m et1; A2 C1 C2 Dt1 R1 314F Rg1 gl6 lg2 314G gl6 lg2 315B Rg1 gl6 315C Rg1 315D A1-b(P415); A2 C1 C2 R1 315D A1-b(P415); A2 C1 C2 R1 315I A1-m2(os)-p1 315J A1-m2(os)-r2 315J A1-m2(79)1A-01 315K a1-m2-7991A-01 315L a1-m2-7991A-p2 315M a1-m2-7991A-p3 315N a1-m2-7991A-p4 315D a1-m2-7991A-p4 315D a1-m2-7991A-p5 315Q a1-m2-8010A-02 315B A1-m3-r1a-sh2-m1-1 315R A1-m3-r1a sh2-m1::Ds 315S a1-m5-o1 315T a1-m5-o2 315U A1-m5-r1 315V A1-m5-r4 315W A1-m5-r5 316A ts4 316B a1-N796 316C dek5-N1339A 317F gl6 ts4 lg2 317I a1-m1-5996-4m::dSpm; Spm 317J a1-m2::Spm-s; Spm-w 317K a1-m2-7991A::Spm-s 317L a1-m2-8004::dSpm 317M a1-m2-8010A::Spm-s 317M a1-m2-8010A::Spm-s 317N a1-m2-8011::Spm-w 317O a1-m2-8012A 317P a1-m2-8147 317Q a1-m2-8187::dSpm 317R a1-m2-8414C 317S a1-m2-8549C 317T a1-m5::Spm-w Sh2 317U a1-m5::Spm-w sh2-1 317V a1-m1-OS::Spm 317W a1-m1-OS::Spm 317W a1-m1-5720::Spm 317X a1-m1-6078::dSpm 317Y a1-m2-8409-2 317Z A1 def-1260 318A ig1 318B ba1 318C y10-7748 318D hcf19-N1257A 318E sh2-N391B 318EA sh2-N2307 318F sh2-N2340 318G na1 318H vp1-Mc 318I y10-8624 319A lg2 A1-b(P415) et1; A2 C1 C2 Dt1 R1 319C lg2 a1-m et1; A2 C1 C2 dt1 R1 319D lg2 a1-m et1; A2 C1 C2 dt1 R1 319F lg2 a1-m et1; A2 C1 C2 Dt1 R1 319F lg2 a1-st et1; A2 C1 C2 Dt1 R1 319G lg2 a1-st et1; dt1

320A lg2 320B lg2-PI184281 320C lg2 na1 320E et1 320F A1 sh2; A2 b1 C1 C2 pl1 R1 320F A1 sh2; A2 b1 C1 C2 320K sh2-94-1001-11 320L sh2-94-1001-58 320M sh2-94-1001-1003 320N a3-Styles; B1-b PI1-Rhoades r1-g 3200 a3-Styles; B1-b PI1-Rhoades R1-nj 321A A1-d31; A2 C1 C2 R1 321B lg2 a1; A2 C1 C2 dt1 R1 321C lg2 A1-b(P415) et1; A2 C1 C2 dt1 R1 321D a1-m4::Ds; A2 C1 C2 R1 321E a1-rUq; A2 C1 C2 R1 321F a1-Mum1; A2 C1 C2 R1 321F a1-Mum3; A2 C1 C2 R1 321H a1-Mum3; A2 C1 C2 R1 3211 a1-Mum4; A2 C1 C2 R1 321J a1-Mum5: A2 C1 C2 R1 322A A1-d31 sh2; A2 C1 C2 dt1 R1 322B A1-d31 sh2; A2 C1 C2 Dt1 R1 322C A1-Mum3-Rev; A2 C1 C2 R1 322F a1-m; A2 b1 C1 dt1 pl1 R1 3221 et1-24 322J et1-27 322K et1-34 322L et1-2162 322M et1-2320 322N et1-2424 3220 et1-2457 322P et1-3191 322Q et1-3328 322R et1-5079 322S et1-84-6013 322T et1-88g-9733 322U et1-43 323A a1-m; A2 C1 C2 Dt1 R1 323D a1-m sh2; A2 C1 C2 Dt1 R1 323E a1-m et1; A2 C1 C2 Dt1 R1 323G a1-m1::rDt (Neuffer); A2 C1 C2 Dt1 R1 323H a1-st; A2 C1 C2 dt1 Mrh R1 323I a1-m1::rDt (Neuffer); A2 C1 C2 dt1 R1 dt1 R1 324A a1-st; A2 C1 C2 Dt1 R1 324B a1-st sh2; A2 C1 C2 Dt1 R1 324E a1-st et1; A2 C1 C2 Dt1 R1 324G a1-st; A2 C1 C2 dt1 R1 324H a1 et1; A2 C1 C2 dt1 R1 324H a1-st et1; A2 C1 C2 dt1 R1 324J a1-sh2-del-Robertson; A2 C1 C2 Bt 324J a1-5n2-del-Robertson; C2 R1 324K a1-Mus1; A2 C1 C2 R1 324L a1-Mus2; A2 C1 C2 R1 324M a1-Mus3 324N a1-Mus4 325A a1-p et1; A2 C1 C2 dt1 R1 325B a1-p et1; A2 B1 C1 C2 Dt1 Pl1 R1 325C a1-x1; A2 C1 C2 R1 325D a1-x3; A2 C1 C2 R1 325E A1 ga7; A2 C1 C2 R1 325G a3 325I a1-p; A2 C1 C2 Dt1 R1 325J a1-p; A2 C1 C2 Pr1 R1 325K a1-m3::Ds sh2-m1::Ds; A2 Ac C1 C2 R1 326A sh2-Elmore 326AA sh2-Garwood 326AB sh2-60-156 326B vp1 326BA vp1-Mum3 326BC vp1-86N6 326BD vp1-86GN14 326BE vp1-86GN18 326BF vp1-86GN19 326BG vp1-Mum2 326BH vp1-Mum1::Mu 326C Rp3 326D te1-1

326DA te1-Forester 326DB te1-Grogan 329A v*-9003 329B v*-8623 329C w*-022-15 329D yd2 329E w*-8336 329F yg*-W23 329G w*-062-3 329H v*-8609 329HA v*-8959 3291 pg2 329K yel*-8630 329L yel*-5787 330A h1 330G a1-mrh; A2 C1 C2 Mrh R1 330H A1-b(P415) Ring 3; A2 C1 C2 R1 330I a1-Mum2; A2 C1 C2 MuDR R1 330J a1-Mum2; A2 C1 C2 R1 330K a1 sh2; A2 C1 C2 dt1 R1 330L a1-mrh; A2 C1 C2 R1 332B dek5-N874A 332C dek24-N1283 332D Wrk1-N1020 332F gl19-N169 332G dek6-N627D 332H dek17-N330D 332I Lxm1-N1600 332M Spc1-N1376 332N wlu1-N28 332S Mv1 333A dek5-25 333AA dek5-MS33 333B te1-Galinat **CHROMOSOME 4 MARKER** 401A Rp4-a 401C Ga1 su1 401D Ga1-S 401E Ga1-S; y1 4011 ga1 su1 401J Ga1-M 401K Ga1-S su1 402A st1 402D Ts5 403A Ts5 fl2 403B Ts5 su1 404A su3-5081; su4-5081 404B su3-89-1303-18; su4-89-1303-18 404C su3-94-4079-6; su4-94-4079-6 405B la1-Pl239110 405BA la1-Funk:1087 405BB la1-Funk:2232 405BC la1-N2020 405BD la1-N2276B 405BE la1-PI184284 405D la1-R su1 gl3 405G la1-R su1 gl4 406C fl2 406CA fl2-DR9234 406D fl2 su1 407D su1 407DA su1-N86 407DB su1-N2316 407DC su1-BKG489-13 407DD su1-PI 407DE su1-R2412 407DF su1-N896A 407DG su1-N1161A 407DH su1-N2313 407DI su1-N2314 407DJ su1-N959 407DK su1-N1968 407DL su1-N1994 407E su1-am 407F su1-am; du1 408B bm3-Burnham su1

408E bm3-91598-3 408J su1 ra3 408K su1; se1 408L su1 zb6 Tu1 409A su1-st 409B su1-66 409C su1-P 409D su1-5051 409F su1-28510 409G su1-28511 409H su1-28512 4091 su1-28513 409J su1-28515 409K su1-28516 409L su1-28517 409M su1-28518 409N su1-28519 409O su1-28520 409P su1-30394 409Q su1-30397 409R su1-30398 409S su1-30399 409T su1-30400 409U su1-30401 409V su1-Bn2 410D su1 zb6 gl3 410E su1-A3 410F su1-4582::Mu1 410G su1-8064 410H su1-2401 410l su1-3837 410J su1-7110 410K su1-2857 410L su1-2859 411B su1 gl4 o1 411F gl7 su1 v17 412C su1 gl3 412E su1 j2 gl3 412G su1 gl4 Tu1 413A su1 o1 413B su1 gl4 413D su1 C2-ldf1(Active-1); A1 A2 C1 R1 413F su1 de*-414E 413G v23 Su1 gl3; bm*-COOP 414A bt2 414AA bt2-Williams 414AB bt2-60-158 414AC bt2-9626 414AD bt2-5288 414B gl4 414BA gl4-Stadler 414BB gl4-gl16 414BD gl4-N525A 414C gl4 o1 414E de*-414E 415A j2 415B o1-N1243 415C o1-N1478A 416A Tu1-A158 416B Tu1-l(1st) 416C Tu1-l(2nd) 416D Tu1-d 416E Tu1-md 416F Tu1 gl3 417A j2 gl3 417B v8 417C gl3 417D o1 gl3 418A gl3 dp1 418B c2; A1 A2 C1 R1 418D C2-ldf1(Active-1); A1 A2 C1 R1 418E dp1 418F o1 418G v17 419A v23-8914 419A V23-0314 419E gl7 419F Di6 gl3 C2; a1-m A2 C1 R1 419G Di6 C2; a1-m A2 C1 R1 419H c2-m1::Spm; A1 A2 C1 R1 419I c2-m2::dSpm c2-m3::Mpi1 419J c2-Mum1 419K c2-m2::dSpm; Spm-s

419L c2-m881058Y::IRMA; En Mod wx1-m8::Spm-I8 420A su1 Dt4 C2; a1-m A2 C1 R1 420C nec*-rd 420CA nec*-016-15 420D yel*-8957 420F dp*-4301-43 420G w*-9005 420H Dt4 C2; a1-m A2 C1 R1 424C gl3-64-4 424D gl3-56-3120-2 424E gl3-56-3129-27 424F gl3-60-2555 424G gl3-Pl183683 424H gl3-Pl251928 4241 gl3-Pl251938 424J gl3-Pl254858 424K gl3-Pl267180 424L gl3-Pl267219 424L gi3-Pi207213 424M gi3-Pi-311517 424N gi3-15 426A Gi5 Su1; gi20 426B gi3-Pi251941 427A colorad 427A cp2-o12 427AA cp2-N211C 427AB cp2-N1875A 427AC cp2-MS2608 427AD cp2-N912 427B dek25-N1167A 427C Ysk1-N844 427D orp1-N1186A; orp2-N1186B 427E dek8-N1156 427F dek10-N1176A 427G Ms41-N1995 427H dek31-N1130 427I Sos1-ref 428A gl5 Su1; gl20 428C nec5-N642 428D spt2-N1269A 428E wt2-N10 428F lw4; Lw3 428G bx1 428H gl5 su1; gl20 428L dsc1-MS2058 CHROMOSOME 5 MARKER 501A am1 a2; A1 C1 C2 R1 501B lu1 501D ms13 501E gl17 501E gl17-N260B 501G gl17 a2; A1 C1 C2 R1 5011 am1 502B A2 ps1-Sprague pr1; A1 C1 C2 R1 502C D9-N2319 502D A2 bm1 pr1; A1 C1 C2 R1 502E Ms42-N2082 502F NI2-N1445 502G A2 ga10; Bt1 503A A2 bm1 pr1 ys1; A1 C1 C2 R1 503B hcf43-N1277B 504A A2 bt1 pr1; A1 C1 C2 R1 504C A2 bm1 pr1 zb1; A1 C1 C2 R1 504E A2 bt1; A1 C1 C2 R1 505B A2 pr1 ys1; A1 C1 C2 R1 505C A2 bt1 pr1 ga*-Rhoades; A1 C1 C2 R1 505D pr1-N1515A 505E pr1-N1527A 506A Å2 v3 pr1; A1 C1 C2 R1 506B A2 pr1; A1 C1 C2 R1 506C A2 pr1 v2; A1 C1 C2 R1 506D na2 A2 pr1; A1 C1 C2 R1 506F A2 pr1 v12; A1 C1 C2 R1 506L A2 br3 pr1; A1 C1 C2 R1 506L A2 br3 pr1; A1 C1 C2 R1 507AA a2-Mus2; A1 C1 C2 R1 507AB a2-Mus3; A1 C1 C2 R1 507AC a2-Mus1; A1 C1 C2 R1 507F a2 bm1 bt1 ga*-Rhoades; A1 C1

C2 R1 507G a2 bm1 bt1; A1 C1 C2 R1 507H A2 bv1 pr1; A1 C1 C2 R1 507I a2-m4::Ds; wx1-m7::Ac7 508A a2 bm1 bt1 pr1; A1 C1 C2 R1 508C a2 bm1 bt1 bv1 pr1; A1 C1 C2 R1 R1 508F a2 bm1 pr1 ys1; A1 C1 C2 R1 508H a2-Mum1 508I a2-Mum2 508J a2-Mum3 508K a2-Mum4 508L bv1 pr1 509G a2-m1::dSpm; Bt1 509H a2-m1(II)::dSpm(class II) 509l pr1-m1 509J a2-m1::dSpm pr1-m2 509K a2-m1(ps) 509L a2-m1::dSpm; Spm-s 509M a2-m5::dSpm 509N A2-m1(os)-r1 510A a2 bm1 pr1 v2; A1 C1 C2 R1 510D a2 pr1 gl8; A1 C1 C2 R1 510D a2 ae1 pr1 gl8; A1 C1 C2 R1 510G a2 ae1 pr1 gl8; A1 C1 C2 R1 510G a2 bm1 pr1 eg1; A1 C1 C2 R1 511C a2 bt1 pr1; A1 C1 C2 R1 511C a2 bt1 pr1; A1 C1 C2 R1 C2 R1 511H a2 bt1; A1 C1 C2 R1 512C a2 bt1 pr1 ga*-Rhoades; A1 C1 C2 R1 512D vp2-N1136B 512F pb4 512G gl8-N166A 512H v13 5121 lw2-vp12 513A a2 pr1; A1 C1 C2 R1 513C a2 pr1 v2; A1 C1 C2 R1 513D A2 pr1 sh4; A1 C1 C2 R1 513E a2 pr1 v12; A1 C1 C2 R1 514A a2 bm1 pr1; A1 C1 C2 R1 514B ae1-PS1 514C ae1-PS2 514D ae1-PS3 514E ae1-PS4 514F ae1-PS5 514G ae1-PS6 514H ae1-PS7 514l ae1-PS8 514J ae1-PS9 514K ae1-PS10 514L ae1-PS11 514M Ae1-5180-r4 514N bt1-m1::dSpm 5140 bt1-m2 514P bt1-m3::dSpm 514Q bt1-m4::Ds 514R Bt1-m1-r1 515A vp2 515AA vp2-DR5180 515AB a2 vp2-green mosaic; A1 C1 C2 R1 515C ps1-Sprague 515CA ps1-8776 515CB ps1-881565-2M 515CC ps1-880 515CD ps1-8205 515D bm1 515E bt1-N1992 515F bt1-N2308 515G bt1-N2309 516B bt1-R 516BA bt1-Elmore 516BB bt1-C103 516BC bt1-Singleton 516BD bt1-sh3 516BE bt1-sh5 516BF bt1-Eldridge 516BH bt1-6-783-7 516BI bt1-Vineyard 516BJ bt1-T 516BK bt1-W187R 516BL bt1-3040

408C su1 zb6

516BM bt1-N797A 516C ms5 516D td1 ae1 516DA td1-Nickerson 516G A2 bm1 pr1 yg1; A1 C1 C2 R1 517A v3 517AB v3-8982 517B ae1 517BA ae1-EMS 517BB ae1-PS12 517BC ae1-PS13 517BD ae1-PS14 517BE ae1-PS15 517BF ae1-PS16 517BH ae1-Elmore 517E ae1 pr1 gl8 518A sh4 518AA sh4-Rhoades 518AB sh4-o9 518AB str4-09 518B gl8-Salamini 518BA gl8-R 518BB gl8-6:COOP 518BC gl8-6:Salamini 518BD gl8-10:COOP 518BE gl8-PI180167 518C na2 518D lw2 519AA ys1-W23 519AB ys1-5344 519AC ys1-N755A 519AD ys1-74-1924-1 519B eg1 519C v2 519D yg1 519E A2 pr1 yg1; A1 C1 C2 R1 519F A2 pr1 gl8; A1 C1 C2 R1 519l zb1-2 520A hcf38-N1273 520B v12 520C br3 520F A2 Dap1; A1 C1 C2 R1 520G A2 pr1 Dap1; A1 C1 C2 R1 520H Dap1-2 521A nec3-N409 521B Nec*-3-9c 521C nec*-8624 521D nec*-5-9(5614) 521E nec*-7476 521F nec*-6853 521G nec*-7281 521H nec*-8376 5211 v*-6373 521J yg*-8951 521K lw3; lw4 521L w*-021-7 521N Inec*-5931 521NA Inec*-8549 521NA inec*-8549 521P Iw3; Lw4 524A v*-PI267226 524B ies*-3F-3330 527A dek18-N931A 527B dek9-N1365 527C dek26-N1331 527D dek27-N1380A 527E grt1-N1308B 527F pec7-N756B 527F nec7-N756B 527G dek33-N1299 527H Msc2-N1124B 527l ppg1-N199 527J nec6-N493 528A Hsf1-N1595 528B wgs1-N206B 528C anl1-N1634 528CA anl1-330C 528E prg1-MS8186 528F ren1-MS807 528H dek*-MS2146 528l dek*-MS1182 529A ani1-N1643 529B anl1-N1645 529C anl1-N1671 529D anl1-N1685

529E anl1-N1691 529F anl1-N1673 CHROMOSOME 6 MARKER 601C rgd1 y1 601F p01-ms6 y1 pl1 601H rhm1 rgd1 y1 601I rhm1 y1 l11 601J Wsm1 Mdm1; Wsm2 Wsm3 601K wsm1 mdm1; wsm2 wsm3 601L Mdm1 y1 602A po1-ms6 wi1 y1 602C y1 602D rhm1 Y1 602J y1-w-mut 602K y1-gbl 602L y1-pb1 602M y1-8549 602N y1-Caspar 6020 y1-Caspar 6020 y1-0317 602P y1-129E 603A y1 110 603AA y1 110-1359 603B y1 111-4120 603C y1 112-4920 603D w15-8896 y1 603D w15-8896 y1 603H mn3-1184 y1 603H mn3-1184 y1 604D y1 l15-Brawn1 604F y1 si1-mssi 604FA y1 si1-ts8 604FB y1 si1-ts8 604FB y1 si1-Sam 604H y1 ms1 604HA y1 ms1-Robertson 604I y1 ms1-6050 604IA ms1-6050 605A wi1 y1 605C y1 pg11; pg12 Wx1 605E wi1 Y1 Pl1 605F wi1 Y1 pl1 605G 13 606A Y1 pg11-4484; pg12-4484 Wx1 606AA pg11-8925; pg12-8925 606AB pg11-48-040-8; pg12-48-040-8 606AC pg11-8563; pg12-8563 606AD pg11-8322; pg12-8322 606B y1 pg11; pg12 wx1 606C Y1 pg11; pg12 wx1 606E y1 pl1 606F y1 Pl1 606l y1 pg11 su2; pg12 Wx1 607A y1 Pl1-Bh1; A1 A2 c1 C2 R1 sh1 wx1 607C y1 su2 607E y1 pl1 su2 v7 607H y1 Pl1-Bh1; A1 A2 c1 C2 R1 sh1 Wxt 607l y1 Pl1-Bh1; A1 A2 c1 C2 R1 sh1 skb1 wx1 607J sm1-Brawn168 607K sm1-Brawn178 607L sm1-Brawn184 608A gs3-N268 608B Y1 I12 60BC sbd1-N2292 608D Les13-N2003 608F y1 pl1 w1 608G Y1 l11 609D Y1 su2 609DA Y1 su2-89-1273 609DB su2-PS1 609DC su2-PS2 609F ms1-Albertsen 610B Dt2 PI1; a1-m A2 C1 C2 R1 610F Y1 pl1 su2 v7 610G hcf34-N1269C 610H Y1 Dt2 pl1; a1-m A2 C1 C2 R1 610I hcf36-N1271B 610J hcf48-N1282C 610K hcf26-N1263C

610M hcf5-N510C 611A Pl1 sm1; P1-rr 611D Pt1 611E Y1 pl1 w1 611EA w1-7366 6111 sm1 tan1-py1; P1-rr 611K Y1 Pl1 w1 611L w1; 11 611L w1; 11 611M afd1 611N sr4-N65A 611O o14-N924 612A w14 612B po1 612BA po1-ms6 612C I*-4923 612D oro1 612DA oro1-6474 612l tan1-py1 612J w14-8657 612K w14-8050 612L w14-6853 612M w14-025-12 612N w14-1-7(4302-31) 613A 2NOR y1; A1 a2 bm1 C1 C2 pr1 R1 v2 wx1 613D vms*-8522 613F w14-8613 613I tus*-5267 613J gm*-6372 613L w*-8954 613M yel*-039-13 613N yel*-7285 613O l*-4-6(4447) 6130 r-4-0(4447) 613P yel*-8631 613T pg11-6656; pg12-6656 627A dek28-N1307A 627B dek19-N1296A 627C vp*-5111 627G dek*-MS1104; I*-1104 **CHROMOSOME 7 MARKER** 701B In1-D 701D o2 701E o2-Mum1 701F Hs1 702A o2 v5 702B o2 v5 ra1 gl1 702I In1-Brawn 703A o2 v5 gl1 703D o2 ra1 gl 703J Rs1-O 703JA Rs1-1025::Mu6/7 703K Rs1-Z 704B o2 ra1 gl1 sl1 704C o2-NA696 704D o2-NA697 705A o2 gl1 705B o2 gl1 sl1 705D o2 bd1 706A o2 sl1 706B vp9-Bot100 707A y8 v5 gl1 707B in1; A1 A2 C1 C2 pr1 R1 707C in1 gl1; A1 A2 C1 C2 pr1 R1 707D v5 707E vp9-R 707EA vp9-3111 707EB vp9-86GN9 707EC vp9-86GN15 707F y8 gl1 707G in1 gl1; A1 A2 C1 C2 Pr1 R1 708A ra1 708AA ra1-Pi262495 708B bd1-N2355 708C o15-N1117 708G y8 709A gl1 709AA gl1-56-3013-20 709AB gl1-56-3122-7 709AC gl1-Pl183644 709AD gl1-Pl218043

709AE gl1-Pl251652 709AF gl1-Pl257507 709AG gl1-Istra 709AH gl1-BMS 709AJ gl1-7L 709AJ gl1-9:COOP 709AK gl1-N212 709AL gl1-N269 709AM gl1-N345B 709C gl1-m 710A dl Tp1 710A gl1 Tp1 710B gl1 mn2 710E o5 gl1 710I gl1 Bn1 710J gl1-N271 710K gl1-dy 711A Tp1 711B ij1-ref::Ds 711G ts*-br 712A ms7 712AA ms7-6007 712B ms7 al1 713A Bn1 713E Bn1 bd1 713H Bn1 ij1 713I bd1 Pn1 714A Pn1 714B o5 714BA 05-PS3038 714BC 05-N874B 714C o5-N1241 714D va1 715A DI3; a1-m A2 C1 C2 R1 715C gll DI3; a1-m A2 C1 C2 R1 716A v*-8647 716B yel*-7748 716C dlf1-N2389A 716D dlf1-N2461 716F Les9-N2008 727A dek11-N788 727B wlu2-N543A 727D v27-N590A 727DA v27-N53B 727DB v27-N413C 727E gl1-cgl 727F Rs4-N1606 727G Rs1-O o2 v5 ra1 gl1 727H ms34-6004 7271 ms34-6010 727J ms34-6013 727K ms34-6014 728A Px3-6 728B ptd2-MS3193 728C mn2-cp1 728D sh6-8601 728E sh6-N1295 728F ren2-NS326 728G dek*-MS2082 728H dek*-MS5153 **CHROMOSOME 8 MARKER** 801A gl18-g 801B v16 8011 yel*-024-5 801K v16 ms8 802A rgh1-N1285 802B emp3-N1386A 802C Ht2 802G ms43 802H gl18-Pl262473 8021 al18-PI262490 803A ms8 803B nec1-025-4 803D gl18-g ms8 803F nec1-7748 803G nec1-6697 804A v21-A552 804B dp*-8925 804C tb*-poey1013 805A fl3 805C gl18-g v21-A552

805E el1 805G ms8 j1 808A ct1 808B Lg4-O 808C Htn1 810A v16 j1; l1 810B j1 827A dek20-N1392A 827B dek29-N1387A 827C Bif1-N1440 827CA Bif1-N1440 827CA Bif1-N2001 827D Sdw1-N1592 827E Clt1-N985 827F pro1-N1058 827G pro1-N1121A 827H pro1-N1528 8271 pro1-N1533 827J wlu3-N203A 827K pro1 827L pro1-Tracy 828A ats1 828C pro1-N1154A 828D pro1-NA342

CHROMOSOME 9 MARKER

901B yg2 C1 sh1 bz1; A1 A2 C2 R1 901C yg2 C1 sh1 bz1 wx1; A1 A2 C2 R1 901E yg2 C1 bz1 wx1; A1 A2 C2 R1 901H yg2 C1 Bz1; A1 A2 C2 R1 901I yg2 C1 sh1 Bz1 wx1 K9S-I; A1 A2 C2 R1 902A yg2 c1 sh1 bz1 wx1; A1 A2 C2 R1 902B yg2 c1 sh1 wx1; A1 A2 C2 R1 902C yg2 c1 sh1 wx1 gl15-Hayes; A1 A2 C2 R1 902D yg2 c1 sh1 Bz1 wx1 gl15 K9S-s; A1 A2 C2 R1 903A C1 sh1 bz1; A1 A2 C2 R1 903B C1 sh1 bz1 wx1; A1 A2 C2 R1 903D C1-I sh1 bz1 wx1; A1 A2 C2 R1 904B C1 sh1; A1 A2 C2 R1 904C C1 sh1 wx1; A1 A2 C2 R1 904D C1 wx1 ar1; A1 A2 C2 R1 904F C1 sh1 bz1 gl15 bm4; A1 A2 C2 R1 905A C1 sh1 wx1 K9S-I; A1 A2 C2 R1 905C C1 bz1 Wx1; A1 A2 C2 R1 905D C1 sh1 wx1 K9S-l; A1 A2 C2 K10-I R1 905E C1 sh1 wx1 v1; A1 A2 C2 R1 905G C1 bz1 wx1; A1 A2 C2 R1 905H c1 sh1 wx1; A1 A2 b1 C2 R1scm2 906A C1 wx1; A1 A2 C2 Dsl Pr1 R1 y1 906B C1 wx1; A1 A2 C2 Dsl pr1 R1 y1 906C C1-I Wx1; A1 A2 C2 Dsl pr1 R1 Y1 906D C1-I; A1 A2 C2 R1 906G C1-I Sh1 Bz1 Wx1; Dsl 906G C1-I Sh1 Bz1 Wx1; Dsi 906H C1 Sh1 bz1 wx1; Ac 907A C1 wx1; A1 A2 C2 R1 907E C1-I wx1; A1 A2 C2 R1 y1 907G c1-p; A1 A2 B1-b C2 pl1 R1 907H c1-n; A1 A2 b1 C2 pl1 R1 907H c1-n; A1 A2 C2 R1 907A C1-S wx1; A1 A2 C2 R1 908A C1 wx1 da1 ar1; A1 A2 C2 R1 908B C1 wx1 v1; A1 A2 C2 R1 908D C1 wx1 gl15; A1 A2 C2 R1 908F C1 wx1 da1; A1 A2 C2 R1 909A C1 wx1 Bf1-ref; A1 A2 C2 R1 909B c1 bz1 wx1; A1 A2 C2 R1 909C c1 sh1 bz1 wx1; A1 A2 C2 R1 909D c1 sh1 wx1; A1 A2 C2 R1 909E c1 sh1 wx1 v1; A1 A2 C2 R1 909F c1 sh1 wx1 gl15; A1 A2 C2 R1 910B c1 sh1 wx1 gl15 Bf1-ref; A1 A2 C2 R1 910D c1; A1 A2 C2 R1 910G C1 sh1-bz1-x2 Wx1; A1 A2 C2 R1 910H C1 sh1-bz1-x3; A1 A2 C2 R1

910l sh1-bb1981 bz1-m4::Ds 910IA sh1-bb1981 bz1-m4::Ds; Ac 910L yg2-str 911A c1 wx1; A1 A2 C2 R1 911B c1 wx1 v1; A1 A2 C2 R1 911C c1 wx1 gl15-Hayes; A1 A2 C2 R1 911D Fas1 911E sem1-1364 912A sh1 912AA sh1-1746 912AB sh1-9026-11 912AC sh1-3-6(6349) 912AD sh1-60-155 912AE sh1-EMS 912AF sh1-4020 912AG sh1-9552 912AH sh1-9626 912Al sh1-3017 912AJ sh1-6 912B sh1 wx1 v1 912E lo2 912H lo2 wx1 913C sh1 I7 913D sh1 l6 913E baf1 913F yg2-Mum1 913G yg2-Mum2 913H yg2-Mum3 913I yg2-Mum4 913J yg2-Mum5 913K yg2-Mum6 913L yg2-Mumo 913L yg2-Mum7 913M yg2-Mum8 913N yg2-Mum9 9130 yg2-DR83-106-3 913P yg2-DR83-106-5 914A wx1 d3-COOP 914B dek12-N1054 914K Wc1-ly; Y1 914L bz1-Mus1 914M bz1-Mus2 914N bz1-Mus3 9140 bz1-Mus5 914P bz1-Mus6 914Q bz1-Mus7 914R bz1-Mus10 915A wx1 915B wx1-a 915C w11 915D wx1-N1050A 915E wx1-Alexander 915F wx1-N1240A 916A wx1 v1 916B wx1 v1-JRL 916C wx1 bk2 916E wx1 v1 gl15 916G Trn1-N1597 916H v31-N828 916l d3-8201 917A wx1 Bf1-ref 917C v1 917D ms2 917DA ms2-6002 917DB ms2-6012 917E gl15-Sprague 917EA gl15-Lambert 917EB gl15-KEW 917F d3-COOP 917FA d3-d2 917FA d3-d2 917FB d3-015-12 917FC d3-072-7 917FD d3-8054 917FF d3-d2-Harberd 917FG d3-d2-Phillips 917FH d3-N660B 918A gl15 Bf1-ref 918B gl15 bm4 918C bk2 Wc1 918D Wc1 918F Wx1 Bf1-ref 918G Wc1 Bf1-ref bm4 918GA Wc1-Wh Bf1-ref bm4 918K bk2 v30

918L wx1 Wc1 919A bm4 919B Bf1-ref bm4 919C I6 919D I7 919G |6; |1 9191 Bf1-DR-046-1 919J bz1-Mum9; MuDR 919K bz1-Mum4::Mu1 919L bz1-Mum1 919M bz1-Mum2 919N bz1-Mum3 9190 bz1-Mum5 919P bz1-Mum5 919P bz1-Mum6 919Q bz1-Mum7 919R bz1-Mum8 919S bz1-Mum9 919T bz1-Mum10 919U bz1-Mum11 919V bz1-Mum12 919W bz1-Mum15 919X bz1-Mum16 919Y bz1-Mum18 920A yel*-034-16 920B w*-4889 920C w*-8889 920E w*-8950 920F w*-9000 920G Tp3L-9SRhoades 920L ygzb*-5588 920M wnl*-034-5 920N pyd1 923A wx1-a 923B wx1-B 923C wx1-B1 923D wx1-B2::TouristA 923E wx1-B3::Ac 923F wx1-B4::Ds2 923G wx1-B6 923H wx1-B7 923l wx1-B8 923J wx1-BL2 923K wx1-BL3 923L wx1-C 923M wx1-C1 923N wx1-C2 9230 wx1-C3 923P wx1-C4 923Q wx1-C31 923R wx1-C34 923S wx1-F 923T wx1-90 923U wx1-H 923V wx1-H21 923W wx1-l 923X wx1-J 923Y wx1-M 923Z wx1-m1::Ds 923ZA wx1-m6R 923ZB wx1-m6NR 923ZC wx1-m8::Spm-I8 923ZD wx1-P60 923ZE wx1-R 923ZF wx1-Stonor 924A Wd1 wd1 C1 C1-I Ring 9S; A1 A2 C2 R1 924B C1-I Ring 9S; A1 A2 C2 R1 924C yg2 924D wd1 924E wd1 C1 sh1 bz1 924F C1 Sh1 sh1 Bz1 bz1 wx1 tiny fragment 9 924G C1-I Bz1; Ac Dsl 924H c1 sh1 bz1 wx1; Ac 925A bz1-m1::Ds wx1-m9::Ac 925C bz1-m2::Ac 925D Wx1-m9r1 925E bz1-m2(DII)::Ds wx1-m6::Ds 925F C1 sh1 bz1 wx1-m8::Spm-l8 925H bz1-m2(DI)::Ds wx1; R1-sc 925l c1-m2::Ds Wx1; Ac 925J c1-m858::dSpm wx1 925K c1-m1::Ds

926A sh1-m5933::Ds 926B Sh1-r3(5933) 926C Sh1-r6(5933) 926D Sh1-r7(5933) 926E Sh1-r8(5933) 926F Sh1-r9(5933) 926G Sh1-r10(5933) 926H Sh1-r11(5933) 926l sh1-m6233::Ds 926J Sh1-r1(6233) 926K Sh1-r2(6233) 926L C1-I sh1-m6258::Ds 926M Sh1-m6258-r1 926N Sh1-r6795-1 9260 bz1-m5::Ac 926P Bz1-wm::Ds1 926Q Bz1-m1-p 926R Bz1-m2-r1 926S Bz1-m2(DII)-r1 926T Bz1-m2(DII)-r2 926U Bz1-m2(DII)-r3 926V sh1-bb1981 Bz1-m4-p1 926W sh1-bb1981 Bz1-m4-r6851 926X sh1-bb1981 Bz1-m4-r7840B 926Y sh1-bb1981 Bz1-m4-r8332 926Z Bz1-m5-p1 926ZA Bz1-m5-r1 926ZB Bz1-m5-r2 927A dek12-N873 927B dek13-N744 927C dek30-N1391 927D Les8-N2005 927E Zb8-N1443 927H C1 Dt7: a1-r A2 C2 R1 927I G6-N1585 927K RId1-N1990 927L RId1-N1441 928A yg2-N27 928AA yg2-N585 928AB yg2-N697 928AC yg2-N610 928B wlu4-N41A 928C ms20 928G c1-m5::Spm wx1-m8::Spm-I8; A1 A2 C2 R1 928H wx1-m7::Ac7 928I C1 bz1-mut::rMut; A1 A2 Bz2 C2 Mut R1 928J C1 bz1-(r)d; A1 A2 C2 R1 928K C1 Sh1 bz1-s; A1 A2 C2 Mut R1 928L ms45-6006 928M ms35-6011 928N ms35-6018 9280 ms*-6021 928P ms*-6022 928Q ms35-6027 928R ms35-6031 928S ms*-6046 928T ms*-6047 929E Dp9 930A wx1-Mum1 930B wx1-Mum2 930C wx1-Mum3 930D wx1-Mum4 930E wx1-Mum5::Mu 930F wx1-Mum6 930G wx1-Mum7 930H wx1-Mum8 930I wx1-Mum9 930J wx1-Mum10 930K wx1-Mum11 930L wx1-Mus16 930M wx1-Mus181 930N wx1-Mus215 931A Wx1-m5::Ds 931B wx1-m6::Ds 931C wx1-m6-o1 931D Wx1-m7-i1 931E Wx1-m8-r10 931F Wx1-m9-r3 931G Wx1-m9-r4 931H wd1-Mus1 9311 wd1-Mus2

931J wd1-Mus3 931K wd1-Mus4 931L wd1-Mus5 931M wd1-Mus6

CHROMOSOME 10 MARKER

X01A oy1-Anderson X01AA oy1-yg X01AB oy1-8923 X01B oy1 R1; A1 A2 C1 C2 X01C oy1 bf2 X01E oy1 bf2 R1; A1 A2 C1 C2 X02C oy1 zn1 R1; A1 A2 C1 C2 X02E oy1 du1 r1; A1 A2 C1 C2 X02G oy1 zn1 X02H Oy1-N1459 X02I Oy1-N1538 X02J Oy1-N1583 X02K Oy1-N1588 X02L Oy1-N1989 X03A sr3 X03B Og1 X03D Og1 R1; A1 A2 C1 C2 X03E oy1 y9 X03F Inr1-Ref X04A Oa1 du1 R1: A1 A2 C1 C2 X04B ms11 X04BA ms11-6051 X04D bf2 X04DA bf2-N185A X05A Og*-0376 X05B Gs4-N1439 X05E bf2 sr2 X056 bf2 sf2 X056 bf2 g1 R1:r; A1 A2 C1 C2 X06A bf2 r1 sr2; A1 A2 C1 C2 X06C nl1 g1 R1; A1 A2 C1 C2 X06F bf2 R1 sr2; A1 A2 C1 C2 X06F bf2 R1 sr2; A1 A2 C1 C2 X07C nd X07C y9 X07CA y9-y12 X07D nl1 X08A vp10 X08B vp10-86GN5 X08C vp10-TX8552 X08F li1 X08FA li1-IL90-243Tco X09B li1 g1 R1; A1 A2 C1 C2 X09EA g1-g4 X09EB g1-56-3005-24 X09EC g1-1-7(X-55-16) X09ED g1-68-609-13 X09EE g1-ws2 X09EF g1-PI262473 X09F ms10 X09FA ms10-6001 X09FB ms10-6035 X09G li1 g1 r1; A1 A2 C1 C2 X10A du1 X10AA du1-PS1 X10AB du1-PS2 X10AC du1-PS3 X10AD du1-PS6 X10AE du1-PS4 X10AF du1-PS5 X10D du1 g1 r1; A1 A2 C1 C2 X10F zn1 X10FA zn1-N25 X10G du1 v18 X11A zn1 g1 X11D Tp2 g1 r1; A1 A2 C1 C2 X11E g1 R1 sr2; A1 A2 C1 C2 X11F g1 r1; A1 A2 C1 C2 X11H zn1 R1-r; A1 A2 C1 C2 X11I Tp2 g1 sr2 X12A g1 r1 sr2; A1 A2 C1 C2 X12C g1 R1-g sr2; A1 A2 C1 C2 X12E g1 R1; A1 A2 C1 C2 X13D g1 r1-r sr2; A1 A2 C1 C2 X13E g1 r1-ch; A1 A2 C1 C2 wx1 X14A r1-r Isr1-Ej; A1 A2 C1 C2 X14E r1; A1 A2 C1 C2 wx1

X14F v18 r1; A1 A2 C1 C2 X14l r1-sc:m3::Ds X14J R1-ni::Ac X14K r1-Del902 X14L r1-g; A1 A2 C1 C2 X15B l1 r1 sr2; A1 A2 C1 C2 X15C R1-g; A1 A2 C1 C2 X15D r1-ch; A1 A2 C1 C2 X15F Isr1 R1-g sr2 X15G isr1 r1-g sr2 X15H isr1 R1-r:Pl302369 X15H Isr1 R1-r;PI302369 X15HA isr1 R1-r;PI302369 sr2 X15I isr1 R1-nj Mst1 X16B r1 K10-l; A1 A2 C1 C2 X16C R1-ch; A1 A2 C1 C2 Pl1 X16CA R1-ch X16D r1 sr2; A1 A2 C1 C2 X16E r1 K10-II; A1 A2 C1 C2 X16F R1 K10-II; A1 A2 C1 C2 X17A r1-g; A1 A2 C1 C2 X17B r1-r; A1 A2 C1 C2 X17C R1-mb; A1 A2 C1 C2 X17D R1-nj; A1 A2 C1 C2 X17E R1-r; A1 A2 C1 C2 X18A R1-lsk; A1 A2 C1 C2 X18B R1-sk:nc-2; A1 A2 C1 C2 X18C R1-st; A1 A2 C1 C2 X18D R1-sk; A1 A2 C1 C2 X18E R1-st Mst1 X18G R1-scm2; A1 A2 bz2 C1 C2 X18H R1-nj; A1 A2 bz2 C1 C2 X18H r1; A1 A2 C1 C2 X19A R1-sc:124 X19B w2 X19BA w2-Burnham X19BB w2-2221 X19C I1 w2 X19D o7 X19E R1-r Lc1-Ecuador; b1 X19F r1 w2 X19G r1-n19 Lc1; b1 X19H r1-g:e Lc1; b1 X20B I1 X20C v18 X20I R1-d:Arapaho X20J R1-d:Catspaw X24A cm1 X24B lep*-8691 X24C v*-8574 X25A R1-scm2; a1-st A2 C1 C2 X25B R1-scm2; A1 A2 C1 c2 X25C R1-sc:122; A1 A2 C1 C2 pr1 X25D R1-scm2; A1 a2 C1 C2 X25E R1-scm2; A1 A2 c1 C2 X26A r1-X1 / R1; A1 A2 C1 C2 X26B R1-scm2; A1 A2 C1 C2 X26C R1-sc:122: A1 A2 C1 C2 X26D R1-sc:5691; A1 A2 C1 C2 X26E R1-scm2; A1 A2 C1 C2 pr1 wx1 X26F R1-scm2; A1 A2 C1 C2 ln1-D X26G R1-scm2; A1 A2 C1 c2m2::dSpm X26H R1-scm2; A1 A2 C1 C2 wx1 X27A dek14-N1435 X27B dek15-N1427A X27C w2-N1330 X27D Les6-N1451 X27E gl21-N478B; gl22-N478C X27F Vsr1-N1446 X27G Oy1-N700 X27H orp2-N1186B; orp1-N1186A X27I I19-N425 X27J 113-N59A X27K v29-N418 X27L Les12-N1453 X28B R1-scm2; a1-m1::rDt (Neuffer) X28C R1-nj:Cudu; A1 A2 C1 C2 X28D Vsr*-N716 X28E Les3 X28F cr4-6143 X28G R1-nj:Chase; A1 A2 C1 C2 X28I R1-scm2; a1-m1-5719::dSpm A2 C1 C2

X28J R1-scm2; A1 A2 bz1 C1 C2 X29A ren3-MS1339 X29B dek*-MS2181 UNPLACED GENES U140C 14 U140G ms22 U140H ms24 U240A Les7-N1461 U240D o11 U240E zn2 U240F zn2-PI251887 U240G zn2-PI236997 U240H zn2-PI239110 U240I zn2-56-3012-10 U340D ws1-COOP ws2-COOP U340DA ws1-Pawnee ws2-Pawnee U340H oro4 U440B gl13 U440C hcf49-N1480 U440D ub1-76C U440E frz1 U440F mg1-Sprague U540A dv1 U540B dy1 U640A dsv1-Dovle U640B dsy1-Russian U640C pam1 U640D pam2 U640E ada1 U640F atn1 Adh1-1S5657 U740A abs1-PI254851 U740B y2 U740C lty1 U740D Ity2 U740F pi1 pi2 U740G Fbr1-N1602 U740H ad2-N2356A U840A csp1-NA1173 U840B rli1-N2302A U840C rli1-N2276 U840D Les21-N1442 U840E zb3 U840F agt1 U840G Wi3-N1614 U840H nld1-N2346 U840I Mc1 U940A Ht3 MULTIPLE GENES 1) pl1 R1-r M142P c1 sh1 wx1; A1 A2 C2 R1-r M142S su1 c2; A1 A2 C1 R1-r M142T A1 A2 b1 C1 C2 pl1 r1-g M142U A1 A2 b1 C1 C2 pl1 r1-r M142V A1 A2 C1 C2 R1-nj M142W A1 A2 C1 C2 R1-st

M141A A1 A2 B1 C1 C2 Pl1 Pr1 R1-g M141AA A1 A2 B1 C1 C2 Pl1-Rhoades Pr1 R1-g M141B A1 A2 B1 C1 C2 pl1 Pr1 R1-g M142A A1 A2 b1 C1 C2 pl1 R1-r M142B a1 A2 b1 C1 C2 pl1 R1-r M142C A1 a2 b1 C1 C2 pl1 R1-r M142C A1 a2 b1 b21 C1 C2 pl1 R1-r M142D A1 A2 b1 b21 C1 C2 pl1 R1-r M142E A1 A2 b1 b22 C1 C2 pl1 R1-r M142E A1 A2 b1 b22 c1 b22 c1 c2 p1 R1-r M142E A1 A2 b1 c1-p C2 p1 R1-r M142E A1 A2 b1 C1-I C2 p1 R1-r M142H A1 A2 b1 C1 c2 p1 R1-r M142I A1 A2 b1 C1 C2-ldím p1 R1-r M142J A1 A2 b1 C1 C2-ldín p1 R1-r M142K A1 A2 b1 C1 C2 pl1 pr1 R1-r M142L A1 A2 b1 C1 C2 gl1 in1 pl1 R1-M142M A1 A2 b1 C1 C2 In1-D pl1 R1-r M1420 C1 sh1 bz1 wx1; A1 A2 C2 R1-r M142Q yg2 c1 sh1 wx1; A1 A2 C2 R1-g M142R A1 A2 C1-l C2 R1-r wx1 M142X A1 A2 b1 C1 C2 Pl1 r1-g

M142ZA A1 a2 b1 C1 C2 pl1 R1-scm2 M142ZC A1 A2 b1 bz2 C1 C2 pl1 R1scm2 M142ZD A1 A2 b1 c1-n C2 pl1 R1scm2 M142ZE A1 A2 b1 c1-p C2 pl1 R1scm2 M241A A1 A2 B1 C1 C2 Pl1 Pr1 r1-g M241C A1 A2 B1 C1 C2 Pl1 Pr1 R1-r M241C A1 A2 B1 C1 C2 Pl1 Pr1 R1-r M241D A1 A2 b1 C1 C2 Pl1-Rhoades r1-g M242A A1 A2 b1 C1 c2 pl1 R1-scm2 M242B A1 A2 b1 C1 C2 pl1 pr1 R1scm2 M242C in1 gl1; A1 A2 b1 C1 C2 pl1 R1-scm2 M242D a1 sh2; A2 b1 C1 C2 pl1 R1scm2 M242E c1 sh1 wx1; A1 A2 b1 C2 pl1 R1-scm2 M242F su1 c2; A1 A2 b1 C1 pl1 R1 scm2 M242G A1 A2 b1 C1 C2 pl1 R1-scm2 M242H A1 A2 b1 C1 C2 pl1 r1-g M242I A1 A2 b1 C1 C2 pl1 r1-r M340A A1 A2 B1 c1 C2 pl1 Pr1 R1-g M340B A1 A2 B1 c1 C2 Pl1 Pr1 R1-g M340C A1 A2 b1 c1 C2 pl1 Pr1 R1-g M341B A1 A2 B1 C1 C2 pl1 Pr1 R1-r M341C A1 A2 b1 C1 C2 Pl1 Pr1 R1-r M341CA A1 A2 b1 C1 C2 PI1-Rhoades Pr1 R1-r M341D A1 A2 B1 c1 C2 Pl1 Pr1 R1-r M341F A1 A2 b1 C1 C2 pl1 Pr1 R1-r M441B A1 A2 B1 C1 C2 pl1 Pr1 R1-r wx1 M441D A1 A2 B1 C1 C2 Pl1 Pr1 r1-r M441F A1 A2 b1 C1 C2 pl1 Pr1 R1-g wx1 M541B A1 A2 b1 C1 C2 pl1 Pr1 R1-g M541F a1 A2 C1 C2 R1-nj M541G A1 a2 C1 C2 R1-nj M541H A1 A2 c1 C2 R1-n M5411 A1 A2 C1-I C2 R1-nj M541J A1 A2 C1 c2 R1-nj M541K A1 A2 C1 C2-Idf1(Active-1) R1-nj M541L A1 A2 bz1 C1 C2 Pr1 R1-nj M541M A1 A2 Bz1 C1 C2 pr1 R1-nj M541N A1 A2 C1 C2 gl1 in1 R1-nj M541O A1 A2 C1 C2 ln1-D R1-nj M541P ae1 wx1 M641C A1 A2 b1 C1 C2 pl1 Pr1 R1-r wx1 M641D A1 A2 C1 C2 Pr1 r1 wx1 y1 M641E A1 A2 C1 C2 r1-g wx1 y1 M741A A1 A2 b1 C1 C2 p1 Pr1 r1-g wx1 M741B Stock 6; A1 A2 B1 C1 C2 PI1 R1-r M741C Stock 6; A1 A2 B1 C1 C2 pl1 R1-r M741F Stock 6; A1 A2 C1 C2 pl1 R1-g M741G Stock 6; A1 A2 C1-I C2 pl1 R1-g wx1 y1 M741H Stock 6; A1 A2 B1 C1 C2 PI1 R1-nj M741I Stock 6; A1 A2 C1 C2 R1 M841A A1 A2 C1 C2 pr1 R1 su1 M841B f1 wx1 M841C v4 wx1 M841D v2 wx1 M841F A1 A2 bz2 C1 C2 R1-scm2 wx1 M841G A1 A2 C1 c2 R1-scm2 wx1 M841H gl6 wx1 M8411 su1 wx1 M841J v16 wx1 M841K gl4 wx1 M841L gl2 lg1 wx1

M142Y A1 A2 B1 C1 C2 Pl1 r1-g

M142Z a1-st A2 b1 C1 C2 pl1 R1 -

scm2

M941A A1 A2 c1 C2 Pr1 R1 wx1 v1 M941B Mangelsdorf's tester; a1 bm2

g1 g11 j1 lg1 pr1 su1 wx1 y1 M941C a1 Dt1 gl2 lg1 wt1

- M941D gl1 wx1 y1 M941E gl8-R wx1 y1 MX40A A1 A2 C1 C2 P1-vv::Ac r1-

scm3.Ds MX40B A1 A2 Ac2 bz2-m::Ds C1 C2

R1 MX40C A1 A2 C1 C2 r1-sc:m3::Ds

trAc8168

MX40D P1-vv::Ac r1

MX41A A1 A2 C1 C2 gl1 pr1 R1 wx1 y1 MX41B A1 A2 C1 C2 gl1 pr1 R1 su1

wx1 v1 MX41C a1 a2 bz1 bz2 c1 c2 pr1 r1 wx1

- MX41D a1 A2 C1 C2 gl1 pr1 R1 su1 wx1 y1
- MX41E a1-m1-n::dSpm A2 C1 C2 R1 wx1-m8::Spm-l8

B-CHROMOSOME

B542A Black Mexican Sweet; B chromosomes present B542B Black Mexican Sweet: B chromosomes absent

TRISOMIC

123A trisomic 1. 223A trisomic 2 328A trisomic 3 422A trisomic 4 523A trisomic 5 615A trisomic 6 718A trisomic 7 922A trisomic 9 X23A trisomic 10

TETRAPLOID

- N102A Autotetraploid; A1 A2 B1 C1 C2 Pl1 Pr1 R1
- N102D Autotetraploid; A1 A2 C1 C2 R1
- N102E Autotetraploid; B chromosomes present
- N102EA Autotetraploid; B
- chromosomes present N102F Autotetraploid; A1 a2 C1 C2 R1
- N103A Autotetraploid; P1-rr N103B Autotetraploid; P1-vv::Ac N103C Autotetraploid; P1-ww
- N103D Autotetraploid; P1-wr N103E Autotetraploid; P1-mm
- N104A Autotetraploid; su1
- N104B Autotetraploid; A1 A2 C1 C2
- pr1 R1 N105B Autotetraploid; wx1 y1 N105D Autotetraploid; A1 a2 bt1 C1
- C2 R1
- N105E Autotetraploid; bt1
- N106C Autotetraploid; wx1
- N107B Autotetraploid; W23 N107C Autotetraploid; Synthetic B
- N107D Autotetraploid; N6

CYTOPLASMIC STERILE/RESTORER

C736A R213 (N); mito-N Rf1 rf2 C736AB R213 (T) Sterile; cms-T Rf1 rf2

C736B Ky21 (N); mito-N Rf1 Rf2 Rf3 RfC

C736C B37 (N); mito-N rf1 Rf2 rf3 rfC C736CA B37 (T) Sterile; cms-T rf1

Rf2

C736CB B37 (T) Restored; cms-T Rf1 Rf2

C736E Tr (N); mito-N Rf3 rfC rfT C736EA Tr (S) Restored; cms-S Rf3

- rfC rfT C736F W23 (N); mito-N rf1 Rf2 rf3 RfC
- C736FA W23 (N); mito-N rf1 Rf2 rf3 RfC
- C736G B73 (N); mito-N rf1 Rf2 rf3 rfC
- C736H L317 (N); mito-N rf3 RfC rfT C836A Wf9 (T) Sterile; cms-T rf1
- rf2 C836B Wf9 (N); mito-N rf1 rf2 rf3
- rfC C836C Wf9 (T) Restored; cms-T Rf1 Rf2 rf3 rfC
- C836D Wf9 (S) Sterile; cms-S rf1 rf2 rf3 rfC
- C836F Mo17 (N); mito-N rf1 Rf2 rf3 rfC
- C836G Mo17 (C) Sterile; cms-C rf1 Rf2 rf3 rfC C836H Mo17 (S) Sterile; cms-S rf1 Rf2 rf3 rfC
- C936D K55 (N); mito-N Rf1 Rf2 rf3 RfC
- C936DA K55 (N); mito-N Rf1 Rf2 rf3 RfC
- C936F N6 (N); mito-N rf1 Rf2 rf3 RfC
- C936FA N6 (N); mito-N rf1 Rf2 rf3 RfC
- C936G N6 (T) Sterile; cms-T rf1 Rf2 C936H N6 (T) Restored; cms-T Rf1 Rf₂
- C936I SK2 (N); mito-N rf1 Rf2 rf3 rfC
- C936J SK2 (T) Sterile; cms-T rf1 RI2
- C936K SK2 (T) Restored; cms-T Rf1 Rf2
- C936M 38-11 (N); mito-N rf1 Rf2 rf3 rfC
- CX36A N6 (C) Restored; cms-C rf1 Rf2 rf3 RfC
- CX36B N6 (S) Sterile; cms-S rf1 Rf2 rf3 RfC
- CX36C B37 (C) Sterile; cms-C rf1 Rf2 rf3 rfC CX36D B37 (S) Sterile; cms-S rf1 Rf2 rf3 rfC

CYTOPLASMIC TRAIT

C337A NCS2 C337B NCS3

TOOLKIT

T0318AA TB-3Ld Ig1; ig1R1-nj T0318AB cms-L; ig1 R1-nj T0318AC cms-MY; ig1 R1-nj T0318AC cms-MY; ig1 R1-nj T0318AE cms-S; ig1 R1-nj T0318AF cms-SD; ig1 R1-nj T0318AF cms-CA; ig1 R1-nj T0318AI cms-C; ig1 R1-nj T0318AJ cms-Q; ig1 R1-nj T0318AJ cms-Q; ig1 R1-nj T0318AJ cms-Q; ig1 R1-nj T034AJ H-II Parent A (for proc T0940A Hi-II Parent A (for producing embryogenic callus cultures) T0940B Hi-II Parent B (for producing embryogenic callus cultures) T0940C Hi-II A x B (for producing embryogenic callus cultures)

T0940D KYS (for chromosome observations in pachytene microsporocytes) T0940E Mu off; a1-Mum2 A2 C1 C2 R1 T3302A Inv1m; P1-vv::Ac bz2-m::Ds T3302C T1-2b; P1-vv::Ac bz2-m::Ds T3302D T1-2(036-7); P1-vv::Ac bz2-m::Ds T3302E T1-2c; P1-vv::Ac bz2-m::Ds T3302G T1-3k; P1-vv::Ac bz2-m::Ds T3302H T1-3(5597); P1-vv::Ac bz2m::Ds T3302I T1-3(5982); P1-vv::Ac bz2m::Ds T3302J T1-4i; P1-vv::Ac bz2-m::Ds T3302K T1-4(064-20); P1-vv::Ac bz2-m::Ds T3303B T1-5b; P1-vv::Ac bz2-m::Ds T3303C T1-5(4613); P1-vv::Ac bz2m::Ds T3303D T1-5(5045); P1-vv::Ac bz2m::Ds T3304I bz2-m::Ds T3304J Inv1m; P1-vv::Ac r1-sc:m3::Ds T3304K Inv1a; P1-vv::Ac r1-sc:m3::Ds T3304M T1-2c; P1-vv::Ac r1sc:m3::Ds T3305A T1-3(5597); P1-vv::Ac r1sc:m3::Ds T3305B T1-4i; P1-vv::Ac r1sc:m3::Ds T3305C T1-4(064-20); P1-vv::Ac r1-sc:m3::Ds T3305F T1-4b; P1-vv::Ac r1sc:m3::Ds T3305H T1-5(6899); P1-vv::Ac r1sc:m3::Ds T3305J T1-5(4613); P1-vv::Ac r1sc:m3::Ds T3305M T1-6(5495); P1-vv::Ac r1sc:m3::Ds T3305N T1-6e; P1-vv::Ac r1 sc:m3::Ds T3305O T1-6(028-13); P1-vv::Ac r1sc:m3::Ds T3306C T1-7(4444); P1-vv::Ac r1sc:m3::Ds T3306D T1-7(4405); P1-vv::Ac r1sc:m3::Ds T3306H T1-8(6591); P1-vv::Ac r1sc:m3::Ds T3306L T1-9(8302); P1-vv::Ac r1sc:m3::Ds T3306M T1-9(6762); P1-vv::Ac r1sc:m3::Ds T3306N T1-10g; P1-vv::Ac r1 sc:m3::Ds T3307A trAc8178; T2-9b (2S.18; 9L.22) wx1 T3307B trAc8178; T2-9c (2S.49; 9S.33) wx1 T3307C trAc8178; T2-9d (2L.83; 9L.27) wx1 T3307D trAc8163; T3-9(8447) (3S.44; 9L.14) wx1 T3307E trAc8163; T3-9c (3L.09; 9L.12) wx1 T3307F trAc8183; T3-9(8447) (3S.44; 9L.14) wx1 T3307G trAc8183; T3-9c (3L.09; 9L.12) wx1 T3308A trAc8200; T4-9g (4S.27; 9L.27) wx1 T3308D trAc8175; T5-9c (5S.07; 9L10) wx1

T3308E trAc8193; T5-9c (5S.07;

T3308F trAc8179; T5-9a (5L.69;

T3308G trAc8181; T5-9a (5L.69;

T3308H trAc8186; T5-9a (5L.69;

9L.10) wx1

9S.17) wx1

9S.17) wx1

9S.17) wx1 T3309A trAc8196; T5-9a (5L.69; 9S.17) wx1 T3309B trAc6062; T6-9b (6L.10; 9S.37) wx1 T3309C trAc6063; T6-9b (6L.10; 9S.37) wx1 T3309D trAc8172; T6-9b (6L.10; 9S.37) wx1 T3309E trAc8184; T6-9b (6L.10; 9S.37) wx1 T3310A trAc8161; T7-9(4363) (7ctr; 9ctr) wx1 T3310B trAc8173; T7-9(4363) (7ctr; 9ctr) wx1 T3310C trAc8173; T7-9a (7L.63; 9S.07) wx1 T3310D trAc8190; T7-9(4363) (7ctr; 9ctr) wx1 T3310E trAc8194; T7-9(4363) (7ctr; 9ctr) wx1 T3310F trAc8185; T7-9a (7L.63; 9S.07) wx1 T3311A trAc8162; T8-9d (8L.09; 9S.16) wx1 T3311B trAc8182; T8-9d (8L.09; 9S.16) wx1 T3311C trAc8182; T8-9(6673) (8L.35; 9S.31) wx1 T3311D trAc6059; T9-10b (9S.13; 10S.40) wx1 T3311E trAc6059; T9-10(8630) (9S.28; 10L.37) wx1 T3311F trAc8180; T9-10b (9S.13; 10S.40) wx1 T3311G trAc8180; T9-10(8630) (95.28; 10L.37) wx1 T3312A Ds-1S1 P1-vv::Ac Dek1 T3312B Ds-1S2 P1-vv::Ac Dek1 T3312C Ds-1S3 P1-vv::Ac Dek1 T3312D Ds-1S4 P1-vv::Ac Dek1 T3312E Ds-1L1 P1-vv::Ac Bz2 T3312F Ds-1L3 Bz2: Ac T3312G Ds-2S1 B1-Peru; P1-vv::Ac T3312I Ds-2S3 B1-Peru: P1-vv::Ac T3312J Ds-2S4; P1-vv::Ac T3312L Ds-3L1 A1 Sh2; P1-vv::Ac T3312M Ds-3L2 A1 Sh2; P1-vv::Ac T33120 Ds-4L1 C2; P1-W:: T33120 Ds-4L1 C2; P1-W::Ac T33120 Ds-4L3 C2; P1-W::Ac T33120 Ds-4L4 C2; P1-W::Ac T3312S Ds-4L6 C2; P1-W::Ac T3312T Ds-4L7 C2; P1-W::Ac T3312U Ds-5L1 A2 Pr1 Bt1; P1w::Ac T3312V Ds-5S1 A2 Pr1 Bt1; P1w::Ac T3312W Ds-5S2 A2 Pr1 Bt1; P1w::Ac T3312Y Ds-9S1 C1-I wx1; Ac T3312Z Ds-10L2 R1-sc; P1-vv::Ac

B-A TRANSLOCATIONS (BASIC SET)

122A	IB-1La
122B	TB-1Sb
222A	TB-1Sb-2 4464
222R	TB-31 2-256270
2074	TD 31 a
321M	TD-JLd
32/8	18-350
421A	TB-4Sa
423E	TB-4Lf
522A	TB-5La
522C	TB-5Sc
614B	TB-6Sa
6140	TRALO
7174	TO 7LL
/1/A	TB-/L0
719A	TB-7SC
809A	TB-8Lc
922B	TB-9Lc Wc1
922D	TB-9Sd

X21B TB-10L19 X22A TB-10Sc	X30D TB-10L4 X30E TB-10L5 X30F TB-10L6
B-A TRANSLOCATIONS (OTHERS)	X30G TB-10L7 X31A TB-10L8
1220 TB1 Lo	X31B TB-10L9
126G TB-1Sb P1-vv::Ac bz2-m::Ds A1	X31D TB-10L11
A2 Bz1 C1 C2 R1	X31E TB-10L12
221J TB-2Sa B1-Peru 221J TB-2Sb	X31H TB-10L15
225A TB-3La-2L7285	X31I TB-10L16
225B TB-1Sb-2Lc	X31J IB-10L17 X324 TB-10L18
320Q TB-5La-3L(1)	X32C TB-10L20
320R TB-5La-3L(2)	X32D TB-10L21
3205 TB-5La-3L(3) 327C TB-3Lc	X32E TB-10L22 X32F TB-10L23
327D TB-3Ld	X32G TB-10L24
329Z T3-B(La); T3-B(Sb)	X32H TB-10L25
331B TB-1La-3L4759-3	X32J TB-10L27
331C TB-1La-3L5242	X32K TB-10L28
331E TB-3L1 331E TB-3L0	X33A TB-10L29
331G TB-3Lh	X33C TB-10L31
331H TB-3Li	X33D TB-10L32
331J TB-3Lk	X33F TB-10L34
331K TB-3LI	X33G TB-10L35
331L 1B-3LM 420B TB-9Sb-4L6504	X33H 1B-10L36 X34A TB-10L37
4201 TB-9Sb-4L6222	X34B TB-10L38
421B TB-1La-4L4692	
4210 TB-7L0-4L4098	INVERSION
423B TB-4Lc	11424 Junto (1.0.20: 1.1.50)
4230 TB-4L0 423D TB-4Le	1143A Inv1a (1.5.30; 1.L.50)
423F TB-1Sb-2L4464-4f	1143C Inv1d (1.L.55; 1.L.92)
425A TB-4Sg 425B TB-4Lb	1143D Inv1k (1.L.46; 1.L.82)
425C TB-4Li	1243B Inv2h (2L.13; 2L.51)
428I Dt6 TB-4Sa	1343A Inv3a (3L.38; 3L.95)
522D TB-5Ld	1343B INV3D (3L.21; 3L.70) 1343C Inv3c (3L.05; 3L.95)
528D TB-1La-5S8041	1343D Inv3(8582) (3S.55; 3L.82)
614A IB-6Lb 627F TB-6Lc Dt2: a1-m A2 C1 C2 B1	1344A Inv9a (95.70; 9L.90)
720A TB-7Lb Dt3; a1-m1::rDt	1443B Inv4c (4S.89; 4L.62)
(Neuffer)	1443D Inv4d (4L.40; 4L.96)
806B TB-8Lb	1444A Inv2a (2S.70; 2L.80)
921A TB-9La	1543A Inv4e (4L.16; 4L.81)
9216 TB-950 9216 TB-91c	1743A INV5(8623) (55.67; 51.69) 1743B Inv6d (65.70; 61.33)
922C TB-9Sb C1-I	1743C Inv6(3712) (6S.76; 6L.63)
929A IsoB9-9 isochromosome Type 1	1743D Inv6a (6S.76; 6L.63)
929C T9-B(La); T9-B(Sb)	1943A Inv7f (7L.17; 7L.61)
929D IsoB9-9 isochromosome	1943B Inv7(8540) (7L.12; 7L.92)
929F T9-B (La + Sb)	1943C Inv7(3717) (75.32; 7L.30) 1943E Inv7a (7L.05; 7L.95)
929G TB-9Sb; T9-8(4453)	IX43A Inv8a (8S.30; 8L.15)
929H TB-9Sb; 19-3(6722)	IX43B Inv9b (9S.05; 9L.87)
929J TB-9Sb-1852	
929K TB-9Sb-2150	RECIPROCAL TRANSLOCATIONS
929L TB-935-14 929M TB-9Sb-2010	(WXTAND WXTMARKED)
TX40D TB-1Sb P1-vv::Ac r1- scm3::Ds	wx01A T1-9c (9L.22; 1.S.48); wx1 wx01B T1-9(5622) (9L12: 1 L10):
TX40E TB-3La a1-m Dt1	wx1
TX40F TB-8LC AC2 bz2-m::Ds TX40G TB-9Sd a1-m Dt1	wx02A 11-9(4995) (9S.20; 1.L.19); wx1
TX40H TB-9Lc trAc81 r1-sc:m3::Ds	wx02AA T1-9(4995) (9S.20; 1.L.19);
X21A TB-10La	WX1 WX1012 T1-0/83801 (01 13: 11 74).
X22B T1La-B-10L18	wx1
X22C TB-10Lb	wx04A T2-9c (9S.33; 2S.49); wx1
X30B TB-10L2	wx06A T2-9d (9L.22, 25.18); wx1
X30C TB-10L3	wx07A T3-9(8447) (9L.14; 3S.44);

B-1014	wx1
1015	WY08A TO Do (01 10: 01 00); wet
3-10L3	WAUGA 13-90 (9L.12, 5L.09), WAT
3-10L6	wx09A 13-9(8562) (9L.22; 3L.65);
B-10L7	wx1
3-10L8	wx10A T4-9e (9L.26: 4S.53): wx1
3-101 9	Wy11A TA-00 /01 27: 45 271: wy1
10110	WATTA 14-59 (SE.27, 45.27), WAT
5-10L10	WX12A 14-9(0007) (95.20; 41.33);
3-10L11	wx1
I-10L12	wx13A T4-9b (9L.29; 4L.90); wx1
3-101 14	wx14A T5-9c (9L 10: 5S 07) wx1
10115	WY14P TE 0(022 11) (01 27: ES 20)
	WX14D 10-9(022-11) (9L.27, 00.00),
TULID	WX1
-10L17	wx15A 15-9(4817) (9S.07; 5L.06);
3-10L18	wx1
B-10L20	wx16A T5-9d (91 10:51 14) wx1
2.101.21	wy174 T5 0g (00 17; 51 60); wy1
	WATTA 15-54 (53.17, 52.09), WAT
3-10L22	WX18A 10-9(4/78) (9L.30; 65.80);
3-10L23	WX1
B-10L24	wx19A T6-9a (9L.40; 6S.79); wx1
B-10L25	wx19B T6-9e (9L 24: 6L 18): wx1
101.26	WY204 TE 06 (02 27; 61 10); WY1 V1
10107	WAZOA 10-50 (50.57, 02.10), WAT YT
3-10L2/	WX21A 10-9(4505) (9Ctr.00; 6L.13);
B-10L28	WX1
B-10L29	wx22A T7-9(4363) (9ctr.00:
B-10L30	7ctr.00); wx1
3-10/ 31	WY234 T7.92 (95 07: 71 63) wy1
D 10100	WWOAA TO OH (00 10, 01 00), WXT
D-10L32	WX24A 18-90 (95.16; 8L.09); WX1
3-10L33	wx25A T8-9(6673) (9S.31; 8L.35);
B-10L34	wx1
B-10135	WY26B T9-10(059-10) (95 31.
P 101 26	101 52), wet
D-10L30	10L.53), WX1
B-10L37	WX2/A 19-100 (95.13; 105.40); WX1
B-10L38	Wx30A T1-9c (9L.22; 1.S.48); Wx1
	Wx30B T1-9(4995) (9S.20: 1.L.19):
	W/v1
ON	W/200 T1.0/8280\ (01 12: 11 74).
ON	WX300 11-9(0309) (9L.13, 1.L.74),
	TXVV
/1a (1.S.30; 1.L.50)	Wx31A T2-9c (9S.33; 2S.49); Wx1
/1c (1.S.30: 1.L.01)	Wx31B T2-9b (9L.22: 2S.18): Wx1
(1d (11 55.11 92)	Wy31C T2-9d /9L 27: 2L 83): Wy1
	W/200 TO 0/0447) (01 14: 00 44).
VIK (1.L.40, 1.L.02)	WX32A 13-9(8447) (9L.14, 35.44);
V2D (25.06; 2L.05)	VVX1
/2h (2L.13; 2L.51)	Wx32B T3-9(8562) (9L.22; 3L.65);
v3a (3L.38; 3L.95)	Wx1
v3b (31 21: 31 70)	Wy32C T3-9c (91 12: 31 09) Wy1
V3c (31 05: 31 05)	W/x32A TA 00 /01 26: 48 52): W/v1
V00 (01.00, 01.00)	WW.00D TA 0/5057) /00 05, 41 00)
V3(8582) (35.55; 3L.82)	WX33B 14-9(5657) (95.25; 4L.33);
v9a (9S.70; 9L.90)	Wx1
v4b (4S.10: 4L.12)	Wx33C T4-9a (9L.27: 4S.27); Wx1
VAC (45 89. 41 62)	Wx34A T5-96 (91 10: 55 07): Wx1
wad (41 40: 41 96)	W/248 T5 0/4817) (05 07: 51 06)
1444 (4L.40, 4L.30)	WA34D 13-3(4017) (33.07, 5L.00),
V41 (4L.17; 4L.03)	VVXI
v2a (25.70; 2L.80)	Wx34C 14-9b (9L.29; 4L.90); Wx1
v4e (4L.16; 4L.81)	Wx35A T5-9(8386) (9S.13; 5L.87);
v5(8623) (5S.67: 5L.69)	Wx1
ved (65 70 · 61 33)	Wy358 T5-99 (05 17: 51 60) W/v1
VE(2710) (CC 76: CL 62)	Wy260 TE Od (01 10; EL 14); Wy1
V0(3/12) (03./0, 0L.03)	WX350 15-90 (9L.10; 5L.14); WX1
vba (65.76; 6L.63)	WX36A 16-9(4/78) (9L.30; 65.80);
v6e (6S.80; 6L.32)	Wx1
v7f (7L.17: 7L.61)	Wx37A T6-9(8768) (9S.61: 6L.89):
V7/8540) (71 12: 71 92)	W/1
100401 (72.12, 72.02)	W(278 T7 0/4262) (0otr 00-
V/(3/17) (/3.32, /L.30)	WX37B 17-9(4363) (900.00,
v/a (/L.05; /L.95)	/ctr.00); Wx1
v8a (8S.30; 8L.15)	Wx37C T6-9(4505) (9ctr.00;
v9b (9S.05: 9L.87)	6L.13): Wx1
	Wy38A T7-9a (9S 07: 71 63): Wy1
	Wy388 T8-94 (95 16: 81 00): Wy4
DOAL TRANCIOCATIONS	W.000 TO 0(0070) (00 04, 01 05)
JUAL TRANSLOCATIONS	WX380 18-9(00/3) (95.31, 6L.35);
AND WX1 MARKED)	WX1
	Wx39A T9-10(8630) (9S.28;
1-9c (9L 22: 1 S 48): wx1	10[37): Wx1
1.9(5622) (91 12:11 10)	Wy398 T9-106 /95 13: 105 /01: MUL
1-0(0022) (02.12, 1.2.10),	WX33D 13-100 (35.10, 103.40), WX1
1 0(400E) (00 00: 41 40)	
1-9(4995) (95.20; 1.L.19);	BURNARIUS ALL
	PHENOTYPE ONLY
T1-9(4995) (9S.20; 1.L.19);	
na manakana zari tanin kara kara ana sa	Kernel Mutants
1-9(8389) (9L.13: 1.L.74):	
	blotched aleurone
	DL 1 00 1001 1

Bh*-86-1381-1 Bh-Tu*-Mumm

brittle endosperm

bt*-011-11 bt*-0601-Alexander bt*-1979-14 bt*-1979-16 bt*-1982 bt*-4380 bt*-4539 bt*-4973 bt*-60-151 bt*-8101 bt*-8102 bt*-83-84-3541-1 bt*-84-4 bt*-84-5 bt*-84-5 bt*-84-5091-9 bt*-84-5091-9 bt*-84-6 bt*-85-3096-6 bt*-85-3098-15 bt*-85-3099-16 bt*-85-3372-27 bt*-85-3372-27 bt*-87-2132-39 bt*-87-2297-1 bt*-87-88-2630-28 bt*-88-3177-14 bt*-88-3177-2 bt*-88-3177-7 bt*-8804 bt*-8805 bt*-89-1265-18 bt*-90286 bt*-A4109 bt*-Alexander bt*-Briggs-1998-1 bt*-F-15 bt*-F-23 bt*-F-31 bt*-F-34 bt*-F-36 bt*-F-8 bt*-Panzio bt*-PetersonResHy bt*-Pl200197 bt*-PI251887 bt-gm*-84-5045-39 bt-gm*-85-3017-24 bt-sh*-Pl251930

brown endosperm

brn*-1981-1 brn*-1981-2 brn*-1981-3 brn*-1981-4 brn*-84-23 brn-bt*-81-F-24

brown kernel lt-brn-sm*-86-1302-37

brown pericarp bp*-Pl183639

colored plumule Pu*-1976-RYDCO

colorless aleurone cl*-85-86-3559-1 cl*-86-1478-16 cl-crown-pale-base*-85-86-3558-23 r*-86-1590-6

defective kernel de*-1276 de*-17

De*-1976-RYDCO de*-2080 de*-2192 de*-2424 de*-2915 de*-2919 de*-3188 de*-4309

de*-5044Hagie de*-85-86-3567-35 de*-8505 de*-8507 de*-8508 de*-86-1472-6 de*-8808 de*-8809 de*-8810 de*-8811 de*-8818 de-small*-8813 de-small*-8814 de-small*-8815 de-small*-8816 de-small*-8817 def*-8101 def*-8102 def*-8103 def*-8104 def*-8105 def*-8106 def*-8107 def*-8108 def*-8109 def*-8110 def*-8111 def*-8112 def*-8113 def*-8114 def*-8116 def*-8118 def*-8119 def*-8120 def*-8121 def*-8122 def*-8123 def*-8125 def*-8126 def*-8127 def*-8128 def*-8130 def*-8131 def*-8132 def*-8134 def*-8136 def*-8137 def*-8138 def*-8201 def*-84-22 def*-84-28 def*-84-29 def*-84-30 def*-84-31 def*-84-37 def*-84-40 def*-84-41 def*-84-45 def*-84-48 def*-84-49 def*-84-53 def*-84-54 def*-84-58 def*-84-60 dek*-1979-32 dek*-1981-1 dek*-74-0060-4 dek*-84-14 dek*-86-1496-35 dek*-8902 dek*-8903 dek*-8904 dek*-99-6273-1 dek*-F-16 dek*-PS602 wrinkled-de*-86-1473-5 wrinkled-gm*-86-1582-32 discolored kernel pig*-84-5080-18

pig-gm*-1979-9 pig-gm*-1981-A pig-gm*-1981-B pig-gm*-1982-3 pig-gm*-5020-14 pig-gm*-84-5078-10 pig-gm*-86-1200-3 pig-gm*-87-2275-15 pig-gm*-87-2305-22 pig-gm⁻-87-2305-22 pig-gm^{*}-Briggs 1998-1 pig-gm^{*}-Briggs 1998-2 pig-gm^{*}-Pl251930 ptd-dek*-1976-RYDCO ptd-dek*-1981 ptd-dec - 1981 ptd-dsc*-87-2490-22 small-pig-gm*-88-89-3554-44 duil endosperm du*-0203 etched endosperm et*-3130 et*-3576 et*-5191 et*-6-9321-1 et*-73-766-1 et*-8-M-4 et*-84-5266-26 et*-84-5270-40 et*-85-86-3518-21 et*-86-1493-6 et*-8616 et*-87-2349-13 et*-88-89-3525-22 et*-88-89-3554-33 et*-89-90-1547-19 et*-89-90-1548-13 et*-Mu1767 et*-Mu2349 et-mutable*-87-2519-31 et*-Osturana et-osturana et-de*-88-89-3526-8 et-gm*-86-1475-34 et-gm*-86-87-1742-38 et-gm*-87-2502-19 granular-o*-84-5274-30 sm-et*-85-3522-29 su-sh-et*-98-1887-1 flint kernel flint*-87-2126-22 floury endosperm fl*-67-412 fl*-83-3386-19 fl*-84-44 fl*-8515 fl*-Mojo fl*-N7B-65-1294 fl*-shoepeg fl*-sucaxo fl-cap*-1981 fl-cap*-66-519-1 fl-de*-8905 small-fl-cap*-1981 gernless brn-gm*-85-3315-6 brn-gm*-85-86-3587-46 brn-gm*-85-86-3595-3 brn-gm*-86-1161-5 emb*-85-3100-32 emb*-85-3100-32 emb*-85-3378-8 gm*-1387 gm*-1979-11 gm*-1979-53 nm*-5234 gm*-5234 gm*-6372 gm*-8510

am*-86-1011-2

am*-86-1013-4

gm*-86-1097-3

am*-86-1335-1

gm*-86-1591-7 am*-86-87-1742-18 gm*-87-2456-9 o-gm*-84-44 o-gm*-98-5733-1 pr-gm*-86-1109-1 sh-gm*-84-5045-32 sh-gm*-86-3082-4 sm-o-gm*-86-3082-4 sm-o-gm*-86-1323-4 small-dsc-gm*-95W-240 w-o-gm*-85-3135-4 w-o-gm*-86-1349-1 w-o-gm*-88-3270-10 y-gm*-85-3288-28 glassy endosperm ae*-1979-1 ae*-1979-7 ae*-1981-MuT ae*-84-7 ae*-92-1365-3 ae*-96-1449-1 ae*-Briggs 1998-1 ae*-Mu32 lemon white lw*-1979-45 lw*-1979-46 lw*-1981 lw*-1998-1 lw*-1998-2 w*-1998-4 lw*-73-2548 lw*-82-1 lw*-85-3076-28 lw*-85-3252-5 lw*-8509 lw*-8513 W -8513 W*-8514 W*-89-90-3609-5 W*-Pl200203 pale-y*-84-5082-33 pale-y*-84-5082-33 pale-y*-84-5187-48 pale-y*-84-5186-19 pale-y*-85-3005-22 pale-y*-85-3005-22 pale-y*-85-3010-40 pale-y*-85-3016-15 pale-y*-85-3016-15 pale-y*-85-3065-25 pale-y*-85-3069-6 pale-y*-85-3069-6 pale-y*-85-3069-6 pale-y*-85-3087-29 pale-y*-88-93551-35 pale-y*-89-1313-3 pale-y*-89-0-1525-23 pale-y*-89-0-3220-1 pale-y*-90-3220-26 w*-8514 marbled aleurone Dap*-3 dap*-86-8126-2 Dap*-89-3177.0 Dap*-89-3177.5 Dap*-89-3178.3 Marbled*-Sprague miniature kernel mn*-1981-51 mn*-87-2215-17 mn*-87-2346-20 mn*-87-2347-36 mn*-87-2422-14 mn*-88-2177-2 mn*-88-89-3509-40 mn*-88-89-3564-25 mn*-Pl239110 mn*-PI245132 small-k*-97-4784-1 mottled aleurone Mt*-2313

Mt*-65-2238 Mt*-Sprague

multiple aleurone layer Mal*-Galinat Mai*-Nelson Mal*-PI515052

opaque endosperm Ig-o-crown*-89-1275-17 o*-1979-54 o*-1981-11-Fox-19 o*-1981-3-Fox-7 o*-1981-5-Fox-9 o*-1981-6-Fox-10 o*-1981-8-Fox-15 o*-1982 o*-1982-2-Fox-13 o*-2-Fox-6 o*-3015 o*-73-798-1 o*-76GH-76 o*-8129 o*-82:288-1 o*-83-84-3549-39 o*-84-5025-15 o*-84-5025-17 0*-84-5025-8 o*-84-5044-35 0*-84-5091-13 0*-84-5094-4 o*-84-5095-23 0*-84-5117-16 o*-84-5261-37 o*-84-5270-40 o*-84-5282-27 o*-84-5295-13 0*-84-5321-28 o*-84-5324-29 o*-84-8a o*-85-3084-8 o*-85-3088-3 0*-85-3335-35 o*-86-87-1767-10 o*-87-2285-33 o*-87-2350-2 o*-88-89-3550-27 0*-97-4784-6 o*-Briggs-1998-1 o*-BS20-Fox-3 o-de*-1981-9-Fox-18 o-dek*-87-2279-12 o*-Fox-12 o*-PI195245 o*-PI200285 o-dek*-6 o-gm*-83-3398-6 o-gm*-84-33 o-sh*-86-1297-2 o-sh*-F1979-19 os*-2162 pro*-Mu1 sh-o*-87-2455-7 small-o*-87-88-2692-5 small-o*-PI195243

pale aleurone

pale-CI*-86-1476-14 pale-CI*-LGC65 pale-CI-gm*-84-5251-1

pale aleurone, with pigmented sectors pa-CI*-m-86-1474-39 pa-CI*-m-86-1478-4 pa-Cl*-m-87-2224-33

pale crown pa-crown*-85-86-3558-23

pale yellow endosperm al*-84-5020-32

pale-endo*-73-3 pale-endo*-73-4004

pig*-86-1178-6

pig-gm*-1979-51

pig-gm*-1979-52

pale-y*-83-3382-16 pale-y*-83-3382-18 pale-y*-83-3382-18 pale-y*-84-5027-22 pale-y*-84-5027-22 pale-y*-84-5027-22 pale-y*-85-3016-30 pale-y*-85-3016-30 pale-y*-85-3042-7 pale-y*-85-3042-7 pale-y*-85-3374-13 pale-y*-85-3374-13 pale-y*-85-3374-13 pale-y*-85-3511-18 pale-y*-85-3511-18 pale-y*-85-3562-31 pale-y*-85-3562-31 pale-y*-85-3562-31 pale-y*-86-1155-2 pale-y*-86-1155-2 pale-y*-86-1155-3 pale-y*-86-1155-3 pale-y*-86-87-1723-27 pale-y*-87-2350-2 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2350-25 pale-y*-87-2422-14 pale-y*-87-2350-25 pale-y*-87-2422-14 pale-y*-87-2422-14 pale-y*-87-88-2679-1 pale-y*-88-2177-2 pale-y-0*-84-5288-2 pale-y-0*-84-5288-2 pale-y-0*-84-5288-2 pale-y-0*-84-5288-2 pale-y-0*-84-5288-1 y*-85-3087-12 y*-85-3087-12 y*-85-3125-7

purple pericarp PI*-CFS-69

red pericarp

r*-ch-Burbank-CFS-80 r*-ch-Pl213730

red silk scar

red-silk-scar*-MTC

shrunken kernel

pale-y-su-sh*-88-3133-28 sh*-1979-10 sh*-1982-2 sh*-2927-Mumm sh*-2928-Mumm sh*-83-3328-24 sh*-84-3 sh*-84-5248-20 sh*-84-5317-44 sh*-85-3045-7 sh*-85-3104-27 sh*-85-3112-20 sh*-85-3375-38 sh*-8502 sh*-8503 sh*-8506 sh*-8511 sh*-8517 sh*-86-1565-17 sh*-87-2045-25 sh*-87-2045-6 sh*-87-2050-1 sh*-87-2050-3 sh*-87-2213-19 sh*-87-2215-12 sh*-87-2355-29 sh*-87-2406-3 sh*-87-2496-21 sh*-88-89-3540-1 sh*-8806 sh*-8807 sh*-8906 sh*-8907 sh*-97P-29-5

sh*-Alexo1968 sh*-F-11 sh*-F-2 sh*-F-25 sh*-KERR sh*-RJL sh-bt*-85-3392-31 sh-crown*-Briggs-1998-1 sh-de*-6607 sh-de*-RSSSC-117 sh-fl*-9180 sh-fl*-9392 sh-o*-87-2410-24 sh-wx*-F-18 su-sh*-F-5 spotted aleurone cl-mut*-85-86-3564-1 cl-mut*-99-2170 coarse-mutable*-86-1417-7 sugary kernel su*-1979-5 su*-1979-8 su*-1981 su*-1982 su*-83-3383-21 su*-83-3383-4 su*-84-5167-6 su*-84-5267-18 su*-84-5350-2 su*-84-5350-31 su*-85-3113-11 su*-85-3133-32 su*-85-3217-10 su*-85-3436-29 su*-8501 su*-8504 su*-87-2046-27 su*-87-2279-12 su*-8801 su*-8802 su*-8803 su*-89-1279-14 su*-8908 su*-F-37 su*-MOEWS su*-PI193430 su*-PI228183 su-sh*-Briggs-1998-1 su-sh*-F-22 viviparous kernel pale-vp*-87-2286-1 pale-vp*-87-2286-18 pale-vp*-87-2286-2 pale-vp*-87-2286-25 pale-vp*-87-2286-25 pale-y*-84-5032-21 pale-y-vp*-83-3124-33 pale-y-vp*-83-3124-33 pale-y-vp*-85-3140-15 pale-y-vp*-85-3240-5 pale-y-vp*-85-3267-6 pale-y-vp*-85-3267-6 pale-y-vp*-85-3267-9 pale-y-vp*-85-3267-9 pale-y-vp*-85-3385-34 pale-y-vp*-88-1376-14 ps*-85-3288-28 ps*-85-3492-36 viviparous kernel ps*-85-3492-36 ps*-85-86-3567-1 ps*-86-1105-2 ps*-86-1352-4 ps*-86-1499-3 ps*-86-87-1742-18 ps*-89-90-1588-37 ps*-90-3222-27 ps*-90-91-8549-7 ps*-96-5032-6 ps*-98-5691-5 ps*-99-2157-1 ps*-Mu85-3061-21

ps*-Mu86-1105-1 vp(ps)*-86-1449-3 vp(ps)*-86-1565-17 vp*-0118 vp*-0315 vp*-2-8c vp*-71-1367 vp*-73-30173 vp*-8101 vp*-8104 vp*-8106 vp*-8107 vp*-8108 vp*-8109 vp*-8110 vp*-8111 vp*-8112 vp*-8113 vp*-8114 vp*-8115 vp*-8116 vp*-8117 vp*-8201 vp*-8203 vp*-8204 vp*-8208 vp*-8209 vp*-8210 vp*-8211 vp*-84-5079-29 vp*-84-5279-29 vp*-84-5315-29 vp*-8418 vp*-8420 vp*-85-3011-11 vp-85-3011-11 vp*-85-3017-9 vp*-85-3040-29 vp*-85-3042-7 vp*-85-3099-16 vp*-85-3135-4 vp*-85-3182-6 vp* 2050-1 vp*-85-3250-1 vp*-85-3339-25 vp*-85-3422-13 vp*-85-86-3567-20 vp*-86-1109-1 vp*-86-1407-15 vp*-86-1573-27 vp*-87-2146-18 vp*-87-22146-18 vp*-87-2213-19 vp*-87-2224-3 vp*-87-2274-37 vp*-87-2299-1 vp*-87-2339-1 vp*-88-89-3555-1 vp*-88-89-8625-5 vp*-89-1181-8 vp*-89-1279-14 vp*-89-90-1561-18 vp*-92-1401-8 vp*-93-1017-2 vp*-95-2086-1 vp*-PI183642 vp*-PI185847 vp*-PI200204 vp*-P1254854 vp*-PI430482 vp-de*-87-2406-23 vp-dek*-99-2197-1 vp-Y*-86-1267-31 vp-Y*-86-1361-7 vp-Y*-86-1361-7 w-vp*-84-5020-4 w-vp*-85-3014-6 w-vp*-85-3304-13 w-vp*-91-1859-8 w-vp*-91-2544-7 w-vp*-91-2544-7 w-vp*-92-1408-1 y-vp*-0730 y-vp*-1982-1 y-vp*-1982-2 y-vp*-2062-Coop y-vp*-2062-Coop y-vp*-60-153 y-vp*-65-792

y-vp*-6961 y-vp*-73-2656 y-vp*-80-6118 y-vp*-8102 y-vp*-8103 y-vp*-8105 y-vp*-8206 y-vp*-8207 y-vp*-83-1A y-vp*-83-3101-36 y-vp*-8336 y-vp*-84-13 y-vp*-8419 y-vp*-85-3572-30 y-vp*-8512 Y-vp*-87-2339-10 y-vp*-87-2340-36 y-vp*-8701 y-vp -8701 y-vp -88-89-3563-33 y-vp -88-89-3613-25 y-vp -Alexho68-195 waxy endosperm wx*-0208 wx*-98-1406-6 white cap kernel Wc*-1982-1 Wc*-DC white endosperm y*-1981 y*-1982-3 y*-73-2 y*-73-2262-1 y*-73-2262-2 y*-73-2394 y*-73-324-1 y*-73-4035 y*-73-426 y*-84-8b y*-87-2201-3 -syn-DOCI v*-Williams-60-154 Seedling Mutants adherent leaf ad*-87-2285-18 albino seedling nlw*-85-3357-17 peach-albino-mutable*-87-2209-30 w*-002-12 w*-005-19 w*-009-6 w*-010-4 w*-011-11 w*-017-14-A w*-017-14-B w*-034-16 w*-037-14 w*-039-15 w*-2065 w*-2246 w*-3858 w*-4670 w*-4873 w*-5201 w*-5255 w*-5267 w*-5602 w*-5863 w*-6293 w*-6504 w*-6575 w*-7165 w*-7219 w*-7281 w*-78-297-3 w*-8105W w*-8129

w*-8147 w*-8201 w*-84-5205-46 w*-84-5222-30 w*-85-3359-11 w*-85-3552-25 w*-85-3559-30 w*-8549 w*-8569 w*-86-1078-6 w*-86-1265-30 w*-86-2222-5 w*-8630 w*-8635 w*-8637 w*-8670 w*-87-2215-8 w*-8963 w*-8977 w*-8992 w*-9235 w*-B-75 w*-Canario Hembrilla Enano w*-MontenegrinFlint w*-PI184276 w*-PI201543 w*-PI228176 w*-PI228179 w*-PI232965 w*-P1232968 w*-PI232972 w*-PI239103 w*-Pl239110 w*-PI251009 w*-PI251885 w*-PI251930 w*-PI251932 w*-PI254851 w*-PI267162 w*-PI267179 w*-PI267204 w*-Singleton-16 w*-Singleton-24 w*-Singleton-25 w*-Singleton-31 w*-Tama wh*-053-4 wh*-2083 wh*-89-578-6 wh*-BMS-Rhoades clasping leaf clsp*-87-2320-9 clsp*-88-89-3522-1 glossy leaf gl*-218-1 gl*-32TaiTaiTaSarga gl*-4339 gl*-5249 gl*-56-3023-6 gl*-56-3023-9 gl*-56-3036-7 gl*-6 gl*-60-2484-8 g|*-63-2440-8 gl*-85-3095-12 gl*-8654 gl*-87-2215-8 gl*-87-2215-30 gl*-88-3142-4 gl*-97P-261-5 gl*-Bizika gl*-gl12 gl*-LGC-117 gl*-LGC-27 gl*-Manglesdorf gl*-Moritsa gl*-PI184286 gl*-Pl200203 gl*-Pl228177 gl*-Pl239101 gl*-Pl239110

al*-PI251885 gl*-Pl251933 gl*-PI262474 gl*-Pl262476 gl*-Pl262494 gl*-Pl262500 al*-PI267203 gl*-PI267209 al*-PI267212 high chlorophyll fluorescence hcf*-88-3005-3 luteus yellow seedling 1*-009-6 1*-017-3 1*-025-4 1*-062-3 1*-2215 1*-2673 1*-4356 1*-4871 I*-549-1 Derived Flint I*-570-2 Cincantin 1*-5783-straw *-6474 1*-6923 1*-6973 1*-7165 *-73-563 *-7748 1*-8321 1*-8376 1*-84-5225-33 *-85-3215-2 *-85-3225-4 1*-85-3457-40 1*-85-3513-1 I*-85-3541-20 I*-86-1112-1 1*-86-1354-9 1*-88-89-3555-13 1*-89-90-1552-10 l*-d-8694 I*-LGC-43 I*-PI183642 I*-PI183643 I*-PI193433 *-PI213737 1*-PI218038 I*-PI239110 I*-PI239114 I*-PI251884 *-PI254854 I*-PI262495 I*-PI267215 I*-PI267226 I*-Tama l*-y wx 6-9b y-l*-8910 Briggs yd*-87-2278-34 yel*-5344 yel*-8721 yel*-8793 yg*-8962 orobanche oro*-6577 oro*-69-9291-8 oro*-84-5080-15 oro*-85-3087-3 oro*-85-3106-41 oro*-85-3113-11 oro*-88-3237-31 oro*-88-89-3550-32 pale green seedling pas*-90-3222-13 pg*-2142 pg*-6372 pg*-69-5079-2 pg*-6923 pg*-7122

pg*-8129 pg*-84-5234-29 pg*-8412 pg*-8911 pg*-8959 pg*-Caspar pg*-PI183648 pg*-PI193424 pg*-PI262473 pg*-Pl262495 pg*-Pl267162 pg*-Pl267215 piebald leaf pb*-2-7-4400 pb*-87-2442-5 red seedling leaf red-leaf*-86-1569-7 translucent leaf trans-leaf*-56-3122-7 trans-leaf*-68F-958 trans-leaf*-79-6533 trans-leaf*-PI228176 tube leaf fused-leaves*-PI228170 tbl*-6504 virescent seedling v*-002-17 v*-007-18 v*-022-17 v*-025-4 v*-037-5 v*-1-2(5376) v*-1-9(5622) v*-2-9(5257 v*-388-Sprague v*-4308 v*-4698 v*-5-10(5355) v*-5287 v*-5413 v*-5575 v*-56-3012-10 v*-5828 v*-60-151 v*-60-2397-15 v*-65-1433 v*-7230 v*-7281 v*-7312 v*-74-1690-1 v*-74-1873-1 v*-74-1948-1 v*-8070 v*-8129 v*-8201 v*-8339 v*-8522 v*-8654 v*-8743 v*-8806 v*-8957 v*-8958 v*-9026 v*-Funk-84-13 v*-leng v*-LGC-111 v*-LGC-142 v*-LGC-98 v*-pb-3019-16 v*-PI180165 v*-PI180231 v*-Pi183640 v*-PI185851 v*-PI195244 v*-PI195245 v*-PI200197 v*-PI200201 v*-PI218042

v*-PI228174 v*-PI228176 v*-PI236996 v*-PI239105 v*-PI239114 v*-Pl239116 v*-PI251883 v*-PI251891 v*-PI251930 v*-PI254856 v*-PI262476 v*-PI262487 v*-PI262489 v*-PI267184 v*-PI267209 v*-PI267212 v*-PI270293 v*-Pollacsek v*-RumanianFlint v*-Singleton-22 v*-Singleton-34 white striped seedling str*-84-5222-7 str*-86-1494-27 yellow green leaf yg*-0130 yg*-4369 yg*-4484 vg*-4889 yg*-5-8(5575) yg*-56-3021-18 yg*-6697 yg*-68-1429 yg*-74-1827-1 yg*-74-1827-1 yg*-77-585 yg*-8105 yg*-8631 yg*-8682 yg*-910J yg*-873 yg*-Caspar yg*-P1239114 yg*-P1267224 yg*-Singleton -23 yg*-Singleton-30 yg-nec*-95-5320-7 Yg-str*-Mu zebra striped seedling zb*-89-3137-5 **Plant Mutants** absence of leaf blade bladeless*-87-2406-23 albescent al*-1479 barren stalk ba*-1447 ba*-68-679-8 ba*-74-304-12 ba*-74-369-2 ba*-PI200290 ba*-PI218135 ba*-PI239105

ba*-Pi251885 ba-ub*-94-4712

brachytic plant br*-2180 br*-78-136KEW br*-OSIJEK-Yugoslavia br*-Pl228171 br*-Pl229105 br*-Singleton-8 br*-Singleton1969-252 td*-Pl262476 brown midrib bm*-PI228174 bm*-PI251009 bm*-Pl251893 bm*-PI251930 bm*-PI262480 bm*-Pl262485 bm*-PI267186

chromosome breaking Chrom-breaking*-Mu

colored leaf lc*-PI239110

crinkled leaf cr*-97P-111 cr*-98-1698

defective tassel Tp*-54-55-Jos Tp*-PI213734 Tp*-Pk41-Jos Tp*-T8-Jos Tp*-Tenn61

dwarf plant d*-018-3 d*-119 d*-136-220 d*-1821 d*-2108 d*-2201 d*-2447-8 d*-3-eared-JC d*-3047 d*-5312 d*-56-3037-23 d*-60-2428 d*-64-4156-1 d*-74-1701-5 d*-75-6071-1 d*-76-1304-9 d*-76-2186 d*-78-282-3 d*-78-286-1 d*-78-286-5 d*-85-3081-33 d*-87-2198-36 d*-gl11 d*-MarovacWhiteDent d*-PI180231 d*-PI183644 d*-PI184286 d*-PI200303 d*-PI213769 d*-PI228169 d*-PI228171 d*-Pl239110 d*-PI245132 d*-PI251652 d*-PI251656 d*-PI251885 d*-P1254854 d*-P1262495 d*-PI267219 d*-rosette d*-shlf-9-436-1 d*-su d*-su2 d*-Teo d*-ts1

green striped leaf gs*-98-5700-5

liguleless

lg*-56-3037-5 Lg*-64-36 lg*-Pl228170 lg*-podcorn

ms*-6025 ms*-6026 ms*-6028 ms*-6033 ms*-6036 ms*-6039 ms*-6040 ms*-6045 ms*-6048 ms*-6049 ms*-6052 ms*-6053 ms*-6054 ms*-6055 ms*-6057 ms*-6058 ms*-6059 ms*-6060 ms*-6061 ms*-6062 ms*-6064 ms*-6065 ms*-6066 ms*-PI217219 ms-si*-355 multiple midrib multiple-midrib*-87-2406-23 narrow leaf nl*-5688 nl*-PI245132 necrotic leaf nec*-011-7 nec*-017-3 nec*-4889 nec*-5588 early nec*-5619 nec*-5876 nec*-77-574-1 nec*-8624 nec*-8737 nec*-fraz nec*-Pl228174 nec*-PI267184 nec*-Vasco nec-pg*-Pl239116

male sterile

ms*-6015

pale green plant pg*-56-3012-10 pg*-8321 pg*-Hy2 Nob 7-5 pg*-LGC-61

ramosa

ra*-412E ra*-4889 ra*-63-3359 ra*-D ra*-PI184279 ra*-Pl239103 ra*-PI267181 ra*-PI267184

tassel seed

ts*-0174 ts*-69-Alex-MO17 ts*-Anderson ts*-PI200203 ts*-PI251881 ts*-PI267209 ts*-Sprague

tasselless

tls*-Funk tls*-Va35

yellow stripe leaf ys*-1479 ys*-5-8(5575)

ys*-67-2403 ys*-8912 ys*-PI-262172 ys*-PI-262475 ys'-Pl228180 ys*-whorled

Ear Mutants

distichous ear distichous*-68-1227

distorted segregation off-ratio*-85-3255-6 off-ratio*-86-1155-1 wx-off-ratio*-86-1110-4

polytypic ear pt*-McClintock pt*-Mu

reduced pollen fertility ga*-0188 ga*-0188 ga*-0213 ga*-3615 ga*-94-764 Ga*-Yugoslavia

silky si*-0443 si*-0503 si*-0648 si*-8104

tunicate Tu*-5090B

unpaired rows up*-Shirer

V. MAIZE GENOME DATABASE MaizeDB-- www.agron.missouri.edu

New Data

In brief. MaizeDB has added over 84,000 new records this year, many with links to external databases. Of the new records, 50% are 'Probes', 16% references, 14% Gel Patterns and 7% Variations . Images of over 1000 agarose screening blots for SSR and RFLP markers are now available. MNL issues are now retroactive to 1988, and accessible to full-text searching as are abstracts for the Annual Maize Genetics Conference, retrospective to 1991. See also the Stock Center report; new stocks are entered into MaizeDB , largely by the staff at the Stock Center.

Data Sources

Data for SSR have been imported from the Missouri Maize Project, the Acemaz database , Pioneer, and Keith Edwards (UK). Clone data for ESTs are imported from dbEST, GenBank, and ZmDB. When SSR are found and mapped in an EST, the link from the SSR primer pair and map information is made to the EST clone, which also inherits the map information. In all cases, acknowledgment of sources, complete with links to the external database source, is entered into each record.

External Database Links

New databases added this year include ZmDB (www.zmdb.iastate.edu) and TIGR(www.tigr.org). EMBL records are now linked to MaizeDB. We continue to regularly update links to dbEST, dbSTS, GenBank; SwissProt; and Medline/PubMed. Some 12% of the non-MNL references have links to PubMed; PubMed provides abstracts, related articles and sequences. GRIN links for genetic stocks are kindly provided by Marty Sachs at the Stock Center. MaizeDB also links to the Plant Genome Database suite at Cornell for comparative map data in GrainGenes and RiceGenes. In response to community requests for files of mapped cDNA sequences, with map coordinates, a utility that creates files of map coordinates and/or accessions for retrieval from GenBank by formats provided at NCBI, has been installed on the database EST page.

Literature Annotation

The past 2-3 years MaizeDB has not had resources to keep up with the flow of literature; this year some additional funding to MaizeDB from the USDA-ARS is being used to enhance this effort. Literature citations are selected and entered automatically, with links to authors. Of 33,837 references, 9,614 are MNL or Maize Meeting Abstracts. Many are currently linked to database objects, such as loci, map data, PCR primers and agronomic traits.

Navigation aids

•A side-bar directory that is inherited on the main pages for the database. It is organized into 4 sections: (1) general information, (2) access styles and (3) category-specific access (Locus, Stocks, Trait, Person, etc.) listings, followed by (4) links to other resources.

•Category-specific navigation helps are available, linked to the sidebar categories and maintained by a staff member most expert in that area and listed on the page for contact. When multiple staff members are involved, users are encouraged to contact the staff, at db request@teosinte.agron.missouri.edu.

•Enhanced 'table of contents', called 'Browser' in the side-bar. Alphabetical lists of the individual items, organized by category, Locus, Probes, Stocks, Images, Persons, and References may be explored and are dynamically created from the underlying database tables. Many of the lists permit restriction of listings to items based on map location and, where applicable, provide information about map and sequence accessions. Lists are created dynamically. The lists may be saved to any desktop, using the browser utility to save as 'source' or 'html' and then imported into standard software, such as an Excel workbook, all-the-while maintaining hypertext links.

Integrated EST and SSR compilations, with links to sequence and map data. These are accessible from the sidebar list of categories.

Works in Progress

The work described below is largely supported by NSF award # 9872655.

Interactive Maize Plant - 'a feel for the organism'

An interactive set of images of the maize plant, complete with glossary of terms for anatomical features, is being developed for different stages of the maize plant, complete with links to underlying MaizeDB records. One goal is to provide access to the underlying maize genome to any person interested in maize, including elementary-high school students or teachers, undergraduates and researchers in various disciplines. The sort of access to be provided may be viewed at Flybase, flybase.bio.indiana.edu, a Drosophila genome database that integrates community information similarly to MaizeDB. The glossary will be harmonize d with trait and phenotype terminology in the germplasm, and also in other related species, in particular the grasses.

Custom Table-Making

A copy of the database has been placed under OPM (Object Protocol Management), which provides a graphical display of data relationships, custom query access, as well as defaults. Access to the work-in-progress is provided on the 'about MaizeDB' page, accessible from the homepage sidebar. In progress, access to a glossary of all the fields in the database. The software is proprietary, and licensed to MaizeDB, free of charge, from Data Logic, www.genelogic.com. We thank Dr. I-Min Chen and her colleagues for providing support in this work.

Interaction with cereal genome databases

OPM (see above section) also permits interactive database query interfaces across platforms, such as Oracle and Sybase, and at different locations. This is distinct from the record-to-record linking typically employed. We are testing a prototype rice genes dataset in collaboration with our colleagues in Tsukuba , Japan , using distinct schema and database management softwares (Oracle, Sybase). We are in contact with the USDA-ARS database suite at Cornell regarding this utility for providing distributed queries across different databases. The OPM software also supports interactions with applications, such as BLAST.

Graphical Representation

Currently, maps are viewable by ACEDB software at the Cornell site and by postscript files, stored at MaizeDB. Viewers, such as that developed for the Japan Rice Genome Program, and also facile custom-map displays are works in progress.

User Statistics

Access to the database has approximately doubled over the past year, from 25,000-30,000 visitors/month to over 60,000. Some 17% of resolvable hits is US educational, 56 % US commercial or network. Data categories most accessed include References, Locus, Person, Maps, Variations, Stock, Probes, GelPatterns, Gene Products, Images; these, however, account for only 22% of hits. Other hits are to various entry pages; a major referral page is the Maize Genetics Stock Center, Urbana.

Mary Polacco, Curator MaizeDB

SYMBOL INDEX

a1 64	cms-Baoll 3	lil1 50	p1 2 24	sh1 12 61	Ts6 72
A1 24	cms-C 63	MAG.T01.D04 52	P1-rr 2	sh2 3 22 64	Ufo1 2
A1-b 32	cms-S 63 73	Mp1 24	P1-wr 2 32 67	shr*-JH87 36	umc61 66
a1-m4 73	csu134a 39	ms*-6011 38	P1-ww 32 67	si*-N815A 37	Ua 37
a3 32	csu134b 39	ms*-6022 38	p2 2	si*-N1323 37	uwo11 77
abs*-7065 50	Ds 73	ms*-6028_38	P:GUS 2	si*-N1967 37	v*-JBL 71
Ac 51 73	En 73	ms*-6040_38	P::P 2	si1-mssi 37	v1 71
ar1 71	EBE"P 24	ms*-DB87A 37	phi029 37	sl*-N1701_36	v1-JBL 71
B-3Ld 54	f1 67 68	ms-si*-355 37	phi053 37	sl1 36	v30 71
b1 32 66	fl*-N1253B 22	ms2 38 69	phi083 52	sml1 51	Va1 72
B1' 66	fl2 71	ms3 37	ohi093 38	Spm 73	vp2 71
B1-1 66	al*-dv 69	ms23_37	pl1 24 32	su1 67 71	w3 71
B1-P 66	al1 4 32	ms24 37 38	ps*-8205 69	su3 70	w3-v11 71
ba1 61	al1-dv 69	ms25-6022 38	ps1-8205 69	su4 70	whp1 32
bf2 67	al2 4 12 66 68	ms26 37	R1 12	T1-9(4995) 67 68	ws3 12
Ba-3449 57	al8 4	ms27 37 38	R1-ch 70	T1-9c 67	wt1 66
bm3 71	alu1 5	ms30-6028 38	R1-d 70	T2-9c 68 73	wx1 12 15 67 68 69
bnia125 52	as1-PI262495 69	ms35 38	R1-a 32	T2-9d 73	70 73
bnlg382 52	GUS 2	ms36 38	R1-r 32	T4-9e 67	X 64
bnlg629 38	hm1 79	ms37 37	ra*-4889 69	T6-9(4505) 69	Y1 71
bnlg1035 37	ht1 79	ms45'-9301 38	ra*-ms26 37	T8-9(043-6) 70	y1 12 69
bnlg1452 37	Ht1 37	ms45-6040 38	ra*-PI262495 69	T8-9(6921) 69	y2 71
bp1 32	73	mssi*-DR87A 37	ra1 13 37	T9-10b 67 69	y8 71
brn1 70	id1 11	Mu 50 70	ra1-DEN 37	TB-1La 72	y11 71
brn2 70	ids1 72	Mu3 51	ra1-ms26 38	TB-1Sb 71 72	zag2 53
bt1 22	ids1-rgo2-Burr 73	MuDR 74	ra1-PI262495 69	TB-4Lf 22 71	zb*-97-2306 2
bz2 67 68	ids1-rgo2-VI 73	na1 6	rbg 57	TB-4Sa 71	zb1 2
c1 24	ia1 54	ncsu1 66	Rf*-VI 72	TB-5La 22	zb3 271
c1-rug 37	in1 32	nec*-200B 22	Rf3 73	TB-5Sc 71	zb4 2 71
c2 32	Inr*-JD 71	npi287a 66	rgo*-VI 72	TB-7Sc 72	zb6 2
C2 24	Inr1 70	npi402 66	rgo1 72	TB-9Lc 72	zb7 2
ch1 32	inra2(tmp) 66	ns1 70	rgo2-Burr 72	tb1 61	zmm1 53
chi1 72	Kn1 72	ns2 70	rgo2-VI 72	te*-Galinat 71	
Chi1 24	les*-3F-3330 71	o2-m(r):3449 57	rhm1 79	te1 71	
Clg1 11	les*-PI262474 71	Og*-0376 69	sh*-N1328A 22	te1-Galinat 71	
cms-Baol 3	lg1 12 68	Og1 69	sh*-N1544 22	tkz1 53	

Silencing (or, Anti-sense, or, Epistasis)

To every gene action there is an evil and obstinate gene action

Coe-suppressor

*

1

÷

.

•

AUTHOR INDEX (* identifies articles authored in this Newsletter)

Adamu, AK 82* Albertsen, MC 36* 37* 38* Altschul, SF 53 Alvey, D 55 Anamthawat-Jonsson, K 77 Armstrong, K 77 Arumuganathan, K 18 Arziev, AS 33* 34* Asker, SE 55 Aspesi, C 50* Auger, D 21 Barnett, LJ 18* Belvayev, A 77 Benner, M 39* Bennetzen, JL 64 Benz, B 58 Berlyn, GP 14 Bernatene, E 40* Bertoia, LM 45* Bhattramakki D 54* Bianchi, A 4 Bird, RMcK 41 58* Black, DA 46 Blakev, CA 55 Blanchard, D 5* Bockholt, AJ 27 Bonamico, N 40' Borges, CMO 74* Borst, P 33 Botstein, D 5 Bouchard, RA 76* Bradford, JA 27 Branson, TF 28 30 31 Brawn, R 55 Brieger, FG 72 Broccoli, AM 43* 44* 45* Bruce, W 24 Brunson, AM 43 Bryant, JA 33 Burak, R 43* 44* Burr, B 72 Burr, F 72 Burson, B 40 Butron, A 64* Byrne, PF 32* Byrum, JR 18* Carlson, LA 59* Carman, JG 55 57 Carneiro, NP 52* Carvalho, CR 74* Castiglioni, P 4 Ceska, O 2 Chalyk, ST (Cealic, ST) 13 17* Chamnan, C 74 Chandler, VL 24 66* Chao, S 39 Charbonneau, M 54* Chase, CD 73* Chase, S 18

Chen, M 64 Chen, Q 77 Cheng, P-c 6* 63* Cheng, W 6* Chernousova, NM 26* Chernov, AA 11* 12* Chiatante, D 33 Ching A 54* Chitnis, PR 2* Chuck, G 7 72 Cocciolone, SM 2* Coe, EH, Jr. 4 19 22* Cokmus, C 5 Colasanti, JJ 11 Cone, K 2 Consonni, G 50* Cook, C 30* Corcuera, VR 40* Coyne, PI 27 Darwin, C 75 Davis 40 61 Davoyan, NI 13 de Carvalho, CR 38* de Vetten, N 24 Deimling, S18 Devos, KM 64 Dewald, CL 40 55* Di Renzo, MA 40* Dille, J 78 Doebley, JF 7 58 61 Dolan M 54* Dolfini, S 50 Dolgykh, YI 52* Dong, X 24* Döring, HP 4* Dubinin, N 14 Dunn, ME 27 Eagles, HA 7 Earle, E 18 Ermishev, VY 53* Esen, A 5* Eubanks, M 27* 28* 30* 31* 32* Eyster, WH 71 Fernandez-Calvin, B 77 Feuillet, C 64 Fink, GR 75 Fisher, A 53 Flores, JG 7 Fox, TW 37* 38* Freeling, M 70 Frisch, DA 18* Gabay-Laughnan, S73* Gale, MD 64 Galinat, WC 7 27 74 75* García, MD 40* 41* 42* Garriga-Caldere, F 77 Gavazzi, G 50* Gill, B 77 Giulini, A 50* Gostimsky, SA 52* Goyette, P 39

Greyson, RI 46 77 Grijalva, A 58 Grotewold, E 24* Gu. MG 77* Guimarães, CT 52* Gulyaev, VA 14 Guo, BZ 64* Guo, LQ 77* Gustafson, JP 78 Haas, G 7 Hake, S 7 Hamann, S 55 Hansen, JD 4 Harper, L 19 Heck, DA 2* Helentiaris, TG 35* Hernandez, JM 24* Heslop-Harrison, JS 77 Hofmeyr, JDJ 61 Hollingshead 14 Horn, J 47 Hoseney, RC 43 Howell, WM 46 Hruska, AJ 58 Humphreys, MW 77 Ikhim, YG 12* Iltis, HH 7 58 Jackson, JD 67* 69* 71* 72* Jacobsen, E 77 James, MG 2* Jansen, RC 5 Jason, G 74 Jellen, EN 77 Jenkins, MR 18* Jerling, L 55 Jewell, DC 46 Jiang, J 77 Joachim, G 72 Kalloo, G 74* Kamps, TL 73 Kamstra, SA 77 Kao, F-J 63* Kaplinsky, N 72* Karyagina, AS 53* Katayama, Y 14 Kato, A 19* Keller, B 64 Kenton, A 77 Kermicle, JL 54 Khan, F 39* Khatypova, IV 55* Khavkin, EE 52 53* Kindiger, B 40 55 King, IP 77 Kite, M 39* Klaahsen, D 7* Konstantinov, YM 33* 34* Koornneef, M 24 Korfhage, C 4* Koterniak VV 57* Kovács, G 48*

Kravchenko, AN 15* Kravchenko, OA 15* Krivov, NV 16* Kruleva, M 63* Kumar, S 74* Kynast, RG 60* LaFargue, C 7 Landau, RL 76 Lander, E 5 Lashermes, P 13 Laughnan, J 55 72 73 Laux, T7 Lavin, T 66* Le. HT 77 Leblanc, O 40 Lee, M 4 Leggett, JM 77 Leitch, IJ 77 Lenhard, M 7 Li, D 77 Li, RG 64* Lin, B-L 63* Lin, Y 24* Liu. LH 77* Liu, Z 34* Livingston, SM 60* Lloyd, AM 24 Lopes, MA 52* Lothrop, JE 7 Lukina, LA 56 Luo, M 18* Lutsenko, GN 33* Lynch, RE 64* Lysikov, VN 15* 16* Maillet, DS 45* 46* 47* Maki, CS 52' Mangelsdorf, PC 27 Markhand, GS 77 Mazzucato, A 55 McMullen, MD 33 64* Meeley, RB 7 Mena, M 53 Mendel, G 75 Michelmore, RW 52 Mihailov, ME 11* 12* Mikhailova, EI 77 Millard, M 60 Mogie, M 55 Mol, J 24 Molina, MdelC 40* 41* 42* Montag, K 53 Moore, G 64 Motto, M 4* Mukai, Y 77 Mullen, K 7* Muntzing, A 14 Muraoka, S 34 Murashige, T 48 Nakahara, Y 77 Naranjo, CA 40* Naroditskii, BS 53*

Krapchev, B 63*

Nedev, T 63* Negruk, V 4 Neuffer, MG 19 22* 36 37 Nina, SB 77* Noble, SW 36* Nogler, GA 55 Odland, WE 60* Okagaki, RJ 60* Ornstein 40 Orr, AR 7* Osipova, ES 52* Padilla, CM 61* Paiva, E 52* Palii, AF 15* Paroda, RS 74 Patterson, E 38* Patterson, GI 66 Perry, W 75 Pesqueira, J 41* Peterson, T 2* Petrov, DF 55 Phillips, RL 60* Pickeing, RA 77 Pilu. R 51* 63 Pismenetskava, IY 26* Pizzirusso, M 24* Podsosonny, VA34* Rafalski A 54* Rasband, W 38 74 Raskina, O 77 Redaelli, R 4* Reeves, RG 27 Register J 54* Riedell, W 31* Riera-Lizarazu, O 60 Rines, HW 60* Ritter, MK 61* Roje, S 39 Romanova, IM 16* Roosevelt, FD 75 Rotarenco, VA 13* 14* Russell, CD 60* Sachan, JKS 72 Salamini, A 4* Salamini, F 4* Saraiva, LS 38 75 Sarkar, KR 72 Satarova, TN 26* Savchenko, MP 26* Scanlon, MJ 70 Schegget, J 33 Schmidt, RJ 61* Schmitz, J 4* Schneerman, MC 54* Schwarzacher, T 77 Selinger, D 24 Shamina, ZB 52* Shaver, DL 11 Sidorenko, LV 2* Singleton, WR 11 Skoog, F 48 Slater, EC 34

Sokolov, VA 55* Song, YC 77* Sprague, GF 70 71 St. Pierre, B 4 Stam, M 66* Stam, P 4* 5 Stevenson, M 77 Stinard, P 2 67* 70* 71* Styles, ED 2 32* Subota, IY 33* 34* Sun, C-K 63* Sundberg, MD 7* Szalma, S 2 Taba, S 7 58 Tacke, E 4* Tang, SX 77 Tarasenko VI 33* Throne, J 32* Ting, YC 11* Tingey S 54* Tomkins, JP 18* Torrecillas, MG 45* Tracy, WF 48* Tran, L 11* Trimnell, MR 36* 37* 38* Tyrnov, VS 13 van Vijk, R 4* Velasco, R 4* Vibrans, H 7 Viccini, LF 38* Vincent, PLD 22* Vos, P 4 Walden, DB 6* 45* 46* 47* 76* Walker 24 Wan, Y 26 Wang, L 77* Weber, DF 54* Wicker, T 18* Widholm, JM 26 Widstrom, NW 64* Wilkes, HG 7 Wilkinson, D 37* Willer 43 Wing, RA 18* Wolff, S 75 Wu, M 62* Xu, X 4 Yan, CH 77 Yan, Z 3* Yang, T 2* 3* Yang, TX 77 Yang, Z 76* Yasuhiko, M 77 Yudin, BF 56 Yumiko, N 77 Zabirova, E 13 17 Zabrodina, MV 53* Zavalishina, A 13 Zeng, M 2* 3* Zhang, ZJ 64* Zhao, Y 19 30 Zimmerman, S 67* Zukova, VV 33*

Bees' wings swarm when harvest ends

By CATHY SALTER

There is a swarm of activity across the Corn Belt in these early weeks of autumn. Farmers across the region

are busy harvesting 40 percent of the world's annual corn crop. Vigorous hybrids developed in the 20th century by American agronomists have increased yields while planted acreage declined. has Across the four-

month growing season, armies of corn stalks supported by deeply dug in roots grow tall and straight, each stalk bearing a single ear of corn the principal food plant of the Western world.

Hartsburg is my little window on the Corn Belt. This is farmland that breathes — its patterns a reflection of the planting seasons. Farmers who grow up on the land breathe in sync with its rhythms. By autumn, soybeans planted after the June wheat harvest turn golden and hundreds of acres of corn turn the color of ancient parchment. Such abundance makes the land feel closed in. When the farmers sense this, crops are harvested and the land breathes again.

The sweet corn I knew before moving to the heartland was a hybrid variety harvested when the meat of the kernel is in the sugar stage and the ears are wrapped in an unripened green husk. The ears of local field corn are twice as big. Their hard, dented, long-toothed kernels are a rich gold, the color sweet corn achieves only after being boiled. Husks ripen, too, turning brittle and brown while farmers wait for the corn to reach the right moment for harvesting.

Like the carefully planted fields they come from, corn kernels grow in long, straight rows. They are living fruit — over a thousand plant embryos on a single ear of corn, each in a state of arrested development. Dried to the right moisture level by blowers in the grain bin and cooled for long-term storage, the kernels maintain their nutritional food value. Harvesting corn is anything but routine work.

Recently, I drove to the Hartsburg bottoms to witness the corn harvest. At the Beckmeyer grain bins, Glen was dumping a load of corn driven up from their fields into an auger hole where the corn began its journey to the top of a grain bin. While the grain spilled forth from the truck bed, Glen opened the dryer bin for me to climb in. Inside, I stretched out on a sea of gold and looked up at the sky through the auger hole 40 feet above me. I was a kernel of corn — a tiny spot dwarfed by the scale of the ocean I had fallen into.

When the grain truck headed back to the fields for another load of corn, I rode along. Before long, Glen's brother Orion circled by in the family's old International combine and signaled for me to climb into the cab. As the combine began to move and the rotary below the cab floor began spinning, we looked down six rows of stalks as high as the cab itself.

As Orion guided the rocket-like picker headers between the rows of corn, dry stalks snapped down and disappeared under the cab. Ears fell onto a center-feed auger and soon had their cobs stripped clean. Finally, kernels of corn were spit up into the combine's grain bin as pieces of pink cob and chaff spewed out through the combine's monstrous teeth.

For the final two passes, I rode on top of the combine's cab. All around me, the golden fields were washed by the pink and lavender hues that follow the western sun as it slipped down into the Missouri River. After filling the combine's bin, we transferred some of the corn into a grain chariot and filled the grain truck for its final run up the hill for the day.

It was dark when Orion began to transfer the final load of corn. As we stood near the auger hole, the moon came up full. In its light, a swarm of bees appeared to have emerged from the grain as it spilled into the auger hole. A thousand tiny pieces of pink chaff hung in the night. "They're called bees' wings," Orion said. "One flake on each side of the corn kernel keeps it nested on the cob."

The evening ended at Barbara and Orion's farm where we shared a late meal. From their table, we looked out at the moon hanging like a lamp over the fat grain bins just across the road. I went home that night pleasantly tired, conscious of how farmers must feel at the end of a long day in the fields. Later, when I brushed my hair, pink bees' wings flew out, encircling my head — traces of a sweet corn harvest and friends I will treasure for seasons to come.

Cathy Salter is a geographer and columnist who lives with her husband, Kit, near Hartsburg at a place they call Breakfast Creek.

By permission of the author (originally appeared in the Boone County Journal, October 16, 1996).

SUBSCRIPTION AND INFORMATION FORM MAIZE GENETICS COOPERATION NEWSLETTER and the MAIZE GENOME DATABASE

This form may be used to subscribe to the Maize Newsletter, or to update your information for MaizeDB. Please complete both sides and return. Your cooperation in providing this information is needed, whether you subscribe to the Maize Newsletter or not, to keep MaizeDB and mailing lists current. Phone, FAX, and E-MAIL addresses are particular aids to Cooperation today.

Subscription can accompany this form, and may be paid as follows:

(mark)		Non-student	Student	Advisor's Signature
	2001 issue	12.00	6.00	
	2002 issue	12.00	6.00	
	2003 issue	12.00	6.00	
	2004 issue	12.00	6.00	
	2005 issue	12.00	6.00	

Airmail costs to addresses outside the U.S. are substantial; if you wish to receive the Newsletter by airmail, please add \$10.00 per issue.

Many back issues are available without cost. A CD of Nos. 1-29 and 33, images of pages, is available on request. Recent issues can be accessed at http://www.agron.missoujri.edu/mnl/.

The TIN for the University of Missouri is 43-6003859.

Payment is required in U.S. funds: By check drawn on a U.S. bank; or by instruments such as postal money orders made out to Maize Genetics; or by credit card with the following information and original signature (we cannot receive payment by FAX):

Name of card holder......Discover or Visa or MasterCard?.....

Billing address of card holder.....

......Phone.....

Account No.....Exp. Date.....

Signature.....

Amount enclosed or to be charged: \$

If you request Relief from Subscription Fee, please mark below:

Financial or Exchange Limitations.....

Public Library

Please provide your mailing address, phone, FAX, and E-MAIL (please type or print carefully), and other information requested on the reverse.

NAME: ADDRESS:

PHONE: FAX:

EMAIL:

WEB PAGE:

This newsletter shares current research on genetics, cytogenetics, molecular biology, and genomics of maize. Information is shared by Cooperators with the understanding that it will not be used in publications without their specific consent.

Send your notes for the 2001 Maize Genetics Cooperation Newsletter now, anytime before January 1. Your MNL Notes will go on the Web verbatim promptly, and will be prepared for printing in the annual issue. Be concise, not formal, but include specific data, tables, observations and methods. Check MaizeDB for the most current information on submission of notes. Send your notes as attachments or as the text of an email addressed to coee@missouri.edu (we will acknowledge receipt, and will contact you further if necessary). You may also send by FTP(see http://www.agron.missouri.edu/mnl/MNL74call.html), and alert us with an email. If email is not feasible, please mail a double-spaced, letter-quality copy of your note, preferably with a disk containing the electronic version. Please follow the simple style used in this issue (city /institution title /--authors; tab paragraphs; give citations with authors' initials --e.g., Maizer, BA et al., J Hered 35:35, 1995, or supply a bibliography). Figures, charts and tables should be compact and camera-ready, and supplied in electronic form (jpg or gif) if possible. To separate columns in tables, please tab instead of using spaces, to ensure quality tabulations on the web. Your MNL Notes will go on the Web verbatim promptly, and will be prepared for printing in the annual issue. Mailing address:

Ed Coe 202 Curtis Hall University of Missouri Columbia, MO 65211-7020 SEND YOUR ITEMS ANYTIME; NOW IS YOUR BEST TIME

MNL 63ff. on line

Author and Name Indexes (and see MaizeDB) Nos. 3 through 43 Nos. 44 through 50 Nos. 51 to date

Symbol Indexes (and see MaizeDB) Nos. 12 through 35 Nos. 36 through 53 Nos. 54 to date

Stock Catalogs

Rules of Nomenclature (1995)

Cytogenetic Working Maps Gene List Clone List Working Linkage Maps Plastid Genetic Map Mitochondrial Genetic Maps MaizeDB - http://www.agron.missouri.edu

Appendix to MNL 44, 1970 (copies available) MNL 50:157 Annual in each issue

Appendix to MNL 36, 1962 (copies available) MNL 53:153 Annual in each issue

Each issue and MaizeDB

MNL69:182 and MaizeDB

MNL 52:129-145; 59:159; 60:149 and MaizeDB MNL69:191; 70:99 and MaizeDB MNL 65:106; 65:145; 69:232 and MaizeDB MNL69:191; 70:118; 72:118 and MaizeDB MNL 69:268 and MaizeDB MNL 70:133 and MaizeDB

Cooperators (that means you) need the Stock Center. The Stock Center needs Cooperators (this means you) to:

(1) Send stocks of new factors you report in this Newsletter or in publications, and stocks of new combinations, to the collection.

(2) Inform the Stock Center on your experience with materials received from the collection.

(3) Acknowledge the source, and advice or help you received, when you publish.

MaizeDB needs Cooperators (this means you) to:

(1) Look up "your favorite gene or expression" in MaizeDB (see section V in this Newsletter) and send refinements and updates to polaccom@missouri.edu, coee@missouri.edu, or db_request@teosinte.agron.missouri.edu.

(2) Compile and provide mapping data in full, including the ordered array of map scores for molecular markers or counts by phenotypic classes; recombination percentage and standard error.

(3) Provide probe or primer information per http://www.agron.missouri.edu/cgi-bin/sybgw_mdb/mdb3/Probe/query; fingerprint data and fragment sizes are significantly useful to colleagues.

May you find a Unique corn in MM!

